Difference between revisions of "Template:Team:TU Eindhoven/Experimental Approach HTML"
(21 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<html> | <html> | ||
− | <div id=" | + | <div id="wikiTour"> |
+ | <div id="moreDepth"> | ||
+ | <span class="tekst1BI">Dig Even Deeper</span><br /> | ||
+ | <img class="tourButton" src="https://static.igem.org/mediawiki/2015/7/7c/TU_Eindhoven_PlayButton.png"> | ||
+ | <span class="tekst1"> | ||
+ | <ul id="wikiTourList"> | ||
+ | <li>See our <a href="https://2015.igem.org/Team:TU_Eindhoven/Notebook">Notebook</a></li> | ||
+ | <li>See our <a href="https://2015.igem.org/Team:TU_Eindhoven/Project/Protocols">Protocols</a></li> | ||
+ | </ul> | ||
+ | </span> | ||
+ | </div> | ||
+ | |||
+ | <a style="text-decoration: none" href="https://2015.igem.org/Team:TU_Eindhoven/Modeling"> | ||
+ | <div id="nextChapter"> | ||
+ | <span class="tekst1BI">Next Chapter</span><br /> | ||
+ | <img class="tourButton" src="https://static.igem.org/mediawiki/2015/d/d1/TU_Eindhoven_FastForward.png"> | ||
+ | <span class="tekst1"> | ||
+ | See how modelling helped us understand our device</span> | ||
+ | </div> | ||
+ | </a> | ||
+ | |||
+ | <a style="text-decoration: none" href="https://2015.igem.org/Team:TU_Eindhoven/Project"> | ||
+ | <div id="previousChapter"> | ||
+ | <span class="tekst1BI">Previous Chapter</span><br /> | ||
+ | <img class="tourButton" src="https://static.igem.org/mediawiki/2015/5/50/TU_Eindhoven_FastReverse.png"> | ||
+ | <span class="tekst1"> | ||
+ | Missed something? Jump back to our Project page</span> | ||
+ | </div> | ||
+ | </a> | ||
+ | </div> | ||
+ | |||
+ | <div id="containercontent"> | ||
+ | <div id="landingPage"> | ||
<br /><br /><br /><br /> | <br /><br /><br /><br /> | ||
<h1> | <h1> | ||
Line 10: | Line 42: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
− | We have designed | + | We have designed a universal membrane platform which is inherently modular and can elicit both slow as well as fast responses. To verify the viability of the platform, we devised characterizing the fast cellular responses. In the construction of our device, we planned on conducting a wide range of experiments to verify whether the individual elements of our system worked. These elements include whether the click reaction occurs, verifying whether the signaling components work, whether proximity invokes a response and whether the DBCO-modified aptamers work. An overview of the experiments is given below. |
</span> | </span> | ||
− | + | </div> | |
− | < | + | |
− | + | ||
− | + | ||
<br /> | <br /> | ||
− | |||
− | |||
− | |||
− | |||
<br /><br /><hr><br /> | <br /><br /><hr><br /> | ||
+ | <h1 id="h1-1"> | ||
− | |||
Verifying the click reaction | Verifying the click reaction | ||
</h1> | </h1> | ||
Line 31: | Line 56: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
− | A vital aspect of our device is clicking the aptamers to the membrane proteins. For this click, we made use of the exact same click chemistry used by iGEM TU Eindhoven 2014. The click reaction was used N-terminally by iGEM TU Eindhoven 2014, in order to minimize sterical strain. To analyze whether the localization of the azide-functionalized amino acid within the loops of OmpX impedes the click reaction, we clicked a DBCO-functionalized fluorophore (TAMRA) to the outer membrane proteins. After some washing steps and spinning down, we expected the cells to remain fluorescent. | + | A vital aspect of our device is clicking the aptamers to the membrane proteins. For this click, we made use of the exact same click chemistry used by iGEM TU Eindhoven 2014. The click reaction was used N-terminally by iGEM TU Eindhoven 2014, in order to minimize sterical strain. To analyze whether the localization of the azide-functionalized amino acid within the loops of OmpX impedes the click reaction, we clicked a DBCO-functionalized fluorophore (TAMRA) to the outer membrane proteins (see Figure 1). After some washing steps and spinning down, we expected the cells to remain fluorescent. |
</span> | </span> | ||
Line 40: | Line 65: | ||
<div class="right1"> | <div class="right1"> | ||
<span class="caption"><br /><br /> | <span class="caption"><br /><br /> | ||
− | Figure | + | Figure 1: To verify whether the click reaction has occured, we incubate the cells with DBCO-functionalized TAMRA. If the outer membrane protein is functionalized with the unnatural amino acid, this TAMRA dye binds to the membrane proteins covalently. In that case, the cells will remain fluorescent after a few washing steps. |
<br /><br /> | <br /><br /> | ||
</span> | </span> | ||
Line 49: | Line 74: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
− | Since the fluorescence of the TAMRA-dye falls within the visible spectrum, we expected to see whether the dye clicked on the outer membrane proteins with the naked eye. To analyze the fluorescence at the single-cell level, we measured cells using the Fluorescence-Activated Cell Sorter (FACS) | + | Since the fluorescence of the TAMRA-dye falls within the visible spectrum, we expected to see whether the dye clicked on the outer membrane proteins with the naked eye. To analyze the fluorescence at the single-cell level, we measured cells using the Fluorescence-Activated Cell Sorter (FACS). |
− | <img src="https://static.igem.org/mediawiki/2015/8/87/TU_Eindhoven_Ingeklapt.png" id="spoilerbutton1" class="spoilerbutton"> | + | <img src="https://static.igem.org/mediawiki/2015/8/87/TU_Eindhoven_Ingeklapt.png" id="spoilerbutton1" class="spoilerbutton"> |
<div class="spoiler" id="spoiler1"> | <div class="spoiler" id="spoiler1"> | ||
<img src="https://static.igem.org/mediawiki/2015/7/7f/TU_Eindhoven2015_FACS.png" alt="FACS" class="spoilerimage" /> | <img src="https://static.igem.org/mediawiki/2015/7/7f/TU_Eindhoven2015_FACS.png" alt="FACS" class="spoilerimage" /> | ||
Line 65: | Line 90: | ||
<br /><br /><br /><hr><br /> | <br /><br /><br /><hr><br /> | ||
+ | <h1 id="h1-2"> | ||
− | |||
Measuring bioluminiscence & fluorescence | Measuring bioluminiscence & fluorescence | ||
</h1> | </h1> | ||
Line 76: | Line 101: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
− | The NanoBiT reporter system is a split luciferase system. The system can only generate a response if both parts of the split luciferase system, LgBiT and SmBiT, are available and in close proximity. Moreover, the substrate has to be present to obtain a signal. | + | The NanoBiT reporter system is a split luciferase system. The system can only generate a response if both parts of the split luciferase system, LgBiT and SmBiT, are available and in close proximity. Moreover, the substrate furimazine has to be present to obtain a signal. |
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 86: | Line 111: | ||
<br /><hr><br /> | <br /><hr><br /> | ||
+ | <h1 id="h1-3"> | ||
+ | Verifying whether oligonucleotides click</h1><br /> | ||
+ | <br /> | ||
+ | <span class="tekst1">A third verification step is to see whether or not the click reaction takes place and if this click reaction takes place equimolarly. Therefore, oligos will be clicked to the outer membrane proteins and incubated with complementary strands that are fluorescently labeled (see Figure 2). After some washing steps and spinning down, it is expected that the fluorescent strands will remain if and only if the oligos succesfully click. Thereby, fluorescence indicates whether oligonucleotides can be succesfully clicked to the COMBs. | ||
+ | <div class="imageText"> | ||
+ | <img class="left1" src="https://static.igem.org/mediawiki/2015/8/8f/TU_Eindhoven_Oligos_Verification.png" alt="Verifying Oligos Click" /> | ||
+ | <div class="right1"> | ||
+ | <span class="caption"><br /><br /> | ||
+ | Figure 2: To verify whether the click reaction has occured with DBCO-modified DNA, we incubate the cells with DBCO-functionalized complementary strands. If the DBCO-modified DNA clicks, the fluorescently labeled DBCO-functionalized complementary strands will anneal with the clicked strands. In that case, the cells will remain fluorescent after a few washing steps. | ||
+ | <br /><br /> | ||
+ | </span> | ||
+ | </div> | ||
+ | </div> | ||
+ | <br /><hr><br /> | ||
+ | <h1 id="h1-4"> | ||
− | + | DNA Strand Displacement | |
− | DNA Strand | + | |
</h1> | </h1> | ||
Line 94: | Line 133: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
− | As we have already touched upon lightly, it has long been thought that nucleic acids had only a single role: carrying hereditary information. As discussed, the discovery that DNA could fold into higher-order structures gave way to SELEX, an evolutionary method of discovering aptamers. The construction of DNA nanostructures, however, was not only carried out through a combinatorial approach | + | As we have already touched upon lightly, it has long been thought that nucleic acids had only a single role: carrying hereditary information. As discussed, the discovery that DNA could fold into higher-order structures gave way to SELEX, an evolutionary method of discovering aptamers. The construction of DNA nanostructures, however, was not only carried out through a combinatorial approach; the specificity and predictability of Watson-Crick basepairing enabled rational design for engineering at the nanoscale <a href="#ref1" name="reft1">[1]</a>. Initially, the designed DNA nanostructures were mostly static, but dynamic nanostructures have become available over the years. Most of these dynamic nanostructures share a common feature: they exploit a biophysical phenomenon known as DNA strand displacement. |
<img src="https://static.igem.org/mediawiki/2015/8/87/TU_Eindhoven_Ingeklapt.png" id="spoilerbutton4" class="spoilerbutton"> | <img src="https://static.igem.org/mediawiki/2015/8/87/TU_Eindhoven_Ingeklapt.png" id="spoilerbutton4" class="spoilerbutton"> | ||
<div class="spoiler" id="spoiler4"> | <div class="spoiler" id="spoiler4"> | ||
− | DNA | + | DNA strand displacement is the workhorse of dynamic DNA technology, the field which uses DNA’s non-covalent interactions to assemble higher-order structures. It is a process where two strands with partial complementarity are hybridized. These pre-assembled DNA strands have only partial complementary, leaving room for a toehold region. When a DNA sequence with full complementary binds to this region (the input), branch migration takes place (see the figure below). In the end, the sequence with full complementary binds to the sequence, yielding the output. |
<img src="https://static.igem.org/mediawiki/2015/7/75/TU_Eindhoven_DNA_Displacement.png" alt="DNA Strand displacement" class="spoilerimagec"> | <img src="https://static.igem.org/mediawiki/2015/7/75/TU_Eindhoven_DNA_Displacement.png" alt="DNA Strand displacement" class="spoilerimagec"> | ||
<br /> | <br /> | ||
Line 105: | Line 144: | ||
</div> | </div> | ||
<br /> | <br /> | ||
− | DNA strand-displacement is a very robust technology | + | DNA strand-displacement is a very robust technology; the sequences of the used strands often go unreported as they play a minor role. The robustness of the technology enabled rational design of numerous nanostructures. These nanostructures include DNA walkers, strand displacement cascades and self-assembling dendrimers <a href="#ref1" name="reft1">[1]</a>. |
<br /><br /> | <br /><br /> | ||
In our project, we want to bring two membrane proteins in close proximity through aptamers. To test whether a close proximity indeed triggers an intracellular signal, we used DNA to bring the membrane proteins in close proximity. DNA is the ideal probe for this purpose, as its high specificity and predictability allowed us to bring the membrane proteins in vicinity. To make the system with DNA reversible, we designed a simple system exploiting the strand displacement (see Figure 3). | In our project, we want to bring two membrane proteins in close proximity through aptamers. To test whether a close proximity indeed triggers an intracellular signal, we used DNA to bring the membrane proteins in close proximity. DNA is the ideal probe for this purpose, as its high specificity and predictability allowed us to bring the membrane proteins in vicinity. To make the system with DNA reversible, we designed a simple system exploiting the strand displacement (see Figure 3). | ||
Line 117: | Line 156: | ||
<div class="right1"> | <div class="right1"> | ||
<span class="caption"> | <span class="caption"> | ||
− | Figure | + | Figure 3: The membrane proteins can be brought in close proximity by clicking oligonucleotides on the loops and adding a long strand complementary to both oligonucleotides. It is expected that this results in a measurable signal. The longer strand is functionalized with a toehold region. Upon addition of a strand perfectly complementary to the longer strand, the system disassembles and the signal will fade out. |
<br /><br /> | <br /><br /> | ||
</span> | </span> | ||
Line 127: | Line 166: | ||
<div class="references"> | <div class="references"> | ||
<span class="caption"> | <span class="caption"> | ||
− | <a href="#reft1" name="ref1">[1]</a> D. Y. | + | <a href="#reft1" name="ref1">[1]</a> Zhang D.Y. and Seelig G., “Dynamic DNA nanotechnology using strand-displacement reactions.,” Nat. Chem., vol. 3, no. 2, pp. 103–13, Mar. 2011. <br /> |
</span> | </span> | ||
Latest revision as of 03:48, 19 September 2015
Next Chapter
See how modelling helped us understand our device
See how modelling helped us understand our device
Previous Chapter
Missed something? Jump back to our Project page
Missed something? Jump back to our Project page
Experimental approach
We have designed a universal membrane platform which is inherently modular and can elicit both slow as well as fast responses. To verify the viability of the platform, we devised characterizing the fast cellular responses. In the construction of our device, we planned on conducting a wide range of experiments to verify whether the individual elements of our system worked. These elements include whether the click reaction occurs, verifying whether the signaling components work, whether proximity invokes a response and whether the DBCO-modified aptamers work. An overview of the experiments is given below.
Verifying the click reaction
A vital aspect of our device is clicking the aptamers to the membrane proteins. For this click, we made use of the exact same click chemistry used by iGEM TU Eindhoven 2014. The click reaction was used N-terminally by iGEM TU Eindhoven 2014, in order to minimize sterical strain. To analyze whether the localization of the azide-functionalized amino acid within the loops of OmpX impedes the click reaction, we clicked a DBCO-functionalized fluorophore (TAMRA) to the outer membrane proteins (see Figure 1). After some washing steps and spinning down, we expected the cells to remain fluorescent.
Since the fluorescence of the TAMRA-dye falls within the visible spectrum, we expected to see whether the dye clicked on the outer membrane proteins with the naked eye. To analyze the fluorescence at the single-cell level, we measured cells using the Fluorescence-Activated Cell Sorter (FACS).
A Fluorescence-Activated Cell Sorter (FACS) is a specialized flow cytometer (see Figure B). The FACS can provide information about cell size, complexity and fluorescence.
The relative cell complexity is measured using size scatter (SSC).
The relative cell size is measured using forward scatter (FSC).
The fluorescence can be measured by using a wide range of filters.
These cell characteristics can be combined to sort cells.
Measuring bioluminiscence & fluorescence
A crucial element in the sensor system is the reporter system. For our COMBs, we have considered several options for reporter systems. As a proof of concept, we will use the split luciferase (NanoBiT) and BRET reporter systems. Both these reporter systems can easily be followed through the measurement of bioluminescence and fluorescence.
The NanoBiT reporter system is a split luciferase system. The system can only generate a response if both parts of the split luciferase system, LgBiT and SmBiT, are available and in close proximity. Moreover, the substrate furimazine has to be present to obtain a signal.
The BRET system relies on the presence of a bioluminescent and fluorescent protein. In our system, we have used NanoLuc in combination with mNeonGreen. To verify the presence of NanoLuc, a bioluminescent assay will be conducted. To verify the presence of mNeonGreen, fluorescence will be measured.
Verifying whether oligonucleotides click
A third verification step is to see whether or not the click reaction takes place and if this click reaction takes place equimolarly. Therefore, oligos will be clicked to the outer membrane proteins and incubated with complementary strands that are fluorescently labeled (see Figure 2). After some washing steps and spinning down, it is expected that the fluorescent strands will remain if and only if the oligos succesfully click. Thereby, fluorescence indicates whether oligonucleotides can be succesfully clicked to the COMBs.
DNA Strand Displacement
As we have already touched upon lightly, it has long been thought that nucleic acids had only a single role: carrying hereditary information. As discussed, the discovery that DNA could fold into higher-order structures gave way to SELEX, an evolutionary method of discovering aptamers. The construction of DNA nanostructures, however, was not only carried out through a combinatorial approach; the specificity and predictability of Watson-Crick basepairing enabled rational design for engineering at the nanoscale [1]. Initially, the designed DNA nanostructures were mostly static, but dynamic nanostructures have become available over the years. Most of these dynamic nanostructures share a common feature: they exploit a biophysical phenomenon known as DNA strand displacement.
DNA strand displacement is the workhorse of dynamic DNA technology, the field which uses DNA’s non-covalent interactions to assemble higher-order structures. It is a process where two strands with partial complementarity are hybridized. These pre-assembled DNA strands have only partial complementary, leaving room for a toehold region. When a DNA sequence with full complementary binds to this region (the input), branch migration takes place (see the figure below). In the end, the sequence with full complementary binds to the sequence, yielding the output.
DNA strand-displacement is a very robust technology; the sequences of the used strands often go unreported as they play a minor role. The robustness of the technology enabled rational design of numerous nanostructures. These nanostructures include DNA walkers, strand displacement cascades and self-assembling dendrimers [1].
In our project, we want to bring two membrane proteins in close proximity through aptamers. To test whether a close proximity indeed triggers an intracellular signal, we used DNA to bring the membrane proteins in close proximity. DNA is the ideal probe for this purpose, as its high specificity and predictability allowed us to bring the membrane proteins in vicinity. To make the system with DNA reversible, we designed a simple system exploiting the strand displacement (see Figure 3).