|
|
(16 intermediate revisions by the same user not shown) |
Line 8: |
Line 8: |
| <ul> | | <ul> |
| <li><a data-scroll href="#background">Background</a></li> | | <li><a data-scroll href="#background">Background</a></li> |
− | <li><a data-scroll href="#objectves">Objectives</a></li> | + | <li><a data-scroll href="#objectives">Objectives</a></li> |
| + | <li><a data-scroll href="#Strategies">Strategies</a></li> |
| <li><a data-scroll href="#biobricks">BioBricks</a></li> | | <li><a data-scroll href="#biobricks">BioBricks</a></li> |
| <li><a data-scroll href="#protocols">Protocols</a></li> | | <li><a data-scroll href="#protocols">Protocols</a></li> |
Line 25: |
Line 26: |
| <section class="main tr"> | | <section class="main tr"> |
| | | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2"> | + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1" id="background"> |
| <h1>Background</h1> | | <h1>Background</h1> |
− | <p>In the past twenty years, the use of insect cells has grown enormously; the establishment of more than 500 insect cell lines from different organisms and tissues is proof of this (Smagghe et al, 2009). However, two cell lines are considered as | + | <p align="justify">In the past twenty years, the use of insect cells has grown enormously; the establishment of more than 500 insect cell lines from different organisms and tissues is proof of this (Smagghe et al, 2009). However, two cell lines are considered as |
− | the basic models, Sf9 cell from Spodoptera frugiperda and High Five™ cells (officially named BTI-TN-5B1-4) derived from Trichopulsia ni. | + | the basic models, Sf9 cell from <i>Spodoptera frugiperda</i> and High Five™ cells (officially named BTI-TN-5B1-4) derived from <i>Trichopulsia</i> ni. |
| <br> Nowadays the most common way to work with the previous cell lines is by using the baculovirus expression vector systems (BEVS). This method consists in the use of a baculovirus, normally the multicapsid nuclear polyhedrosis virus Autographa | | <br> Nowadays the most common way to work with the previous cell lines is by using the baculovirus expression vector systems (BEVS). This method consists in the use of a baculovirus, normally the multicapsid nuclear polyhedrosis virus Autographa |
− | california (AcMNPV), as a vector to infect the cells in order to produce protein. The gene of interest is introduced into the viral genome via homologous recombination with a transfer vector (Greene, 2004) , see Figure 1.</p> | + | california (AcMNPV), as a vector to infect the cells in order to produce protein. The gene of interest is introduced into the viral genome via homologous recombination with a transfer vector (Greene, 2004).</p> |
| <br> | | <br> |
− | <p> | + | |
− | <strong>Figure 1.</strong> Generation of recombinant baculoviruses and gene expression in Sf9 cells. Figure from (Invitrogen, 2015)</p>
| + | |
| <!-- Contenedor contenido principal y columnas laterales --> | | <!-- Contenedor contenido principal y columnas laterales --> |
| </article> | | </article> |
| | | |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="objectives">
| + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1"> |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | |
− | </article>
| + | |
− | | + | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2"> | + | |
| <h1>Objectives</h1> | | <h1>Objectives</h1> |
− | <p>The aim of our project is to expand the use of insect cells in synthetic biology. We believe that we have the opportunity to enrich the part registry with biobricks designed for an insect chassis. To accomplish our goal, our team is going to introduce various biobricks that contain basic functional parts necessary to build your own expression cassette for insect cells. In addition, we want to validate the use of the CRISPR/Cas9 System in the Sf9 cells for specific genome editing. </p> | + | <p align="justify">The aim of our project is to expand the use of insect cells in synthetic biology. We believe that we have the opportunity to enrich the part registry with biobricks designed for an insect chassis. To accomplish our goal, our team is going to introduce various biobricks that contain basic functional parts necessary to build your own expression cassette for insect cells. In addition, we want to validate the use of the CRISPR/Cas9 System in the Sf9 cells for specific genome editing. </p> |
| | | |
| </article> | | </article> |
| + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1" id="Strategies"> |
| + | <h1>Strategies</h1> |
| + | <div class="row" style="text-align:center;"> |
| + | <h2>BEVS</h2> |
| + | <img src="https://static.igem.org/mediawiki/2015/7/7d/Tec-Monterrey_Baculovirus_1.jpg" class="img-responsive"> |
| + | <p align="justify">Characterization of the widely used polyhedrin promoter (<a href="http://parts.igem.org/Part:BBa_K173400">BBa_K1734000</a>) and the confirmation of two secretion signals (<a href="http://parts.igem.org/Part:BBa_K1734001">BBa_K1734001</a>, <a href="http://parts.igem.org/Part:BBa_K1734002">BBa_K1734002</a>). All the work was confirmed by using the reporter gene Nanoluc (<a href="http://parts.igem.org/Part:BBa_K1734004">BBa_K1734004</a>)</p> |
| + | </div> |
| + | <div class="row" style="text-align:center;"> |
| + | <h2>STABLE</h2> |
| + | <img src="https://static.igem.org/mediawiki/2015/6/61/Tec-Monterrey_Stable_Line_1.jpg" class="img-responsive"> |
| + | <p align="justify">Random genome integration to generate a stable cell line mediated by zeocin antibiotic resistance by selective pressure. The promoter OpIE2 (<a href="http://parts.igem.org/Part:BBa_K1734001">BBa_K1734001</a>) was used to test protein production.</p> |
| + | </div> |
| + | <div class="row" style="text-align:center;"> |
| + | <h2>CRISP/Cas9</h2> |
| + | <img src="https://static.igem.org/mediawiki/2015/c/c2/Tec-Monterrey_Crispr_1.jpg" class="img-responsive"> |
| + | <p align="justify">To prove the function of the CRISPR/Cas9 in the Sf9, we developed two constructs of our gRNA (<a href="http://parts.igem.org/Part:BBa_K1734012">BBa_K1734012</a>, <a href="http://parts.igem.org/Part:BBa_K1734013">BBa_K1734013</a>) to attenuate the Nanoluc’s luminescence in the stable cell line. These gRNAs are in the same plasmid that produces the Cas9 protein and a GFP protein as a fluorescent marker, having two separate plasmids. We will work with both pathways of CRISPR: nonhomologous end joining and homology-directed repair.</p> |
| + | </div> |
| + | </article> |
| | | |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="biobricks">
| + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1"> |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | |
− | </article>
| + | |
− | | + | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2"> | + | |
| <h1>Biobricks</h1> | | <h1>Biobricks</h1> |
− | <h5>Polyhedrin promoter (pPH) <a href="http://parts.igem.org/Part:BBa_K1734000">(BBa_K1734000)</a></h5> | + | <strong><h3>Polyhedrin promoter (pPH) <a href="http://parts.igem.org/Part:BBa_K1734000">(BBa_K1734000)</a></h3></strong> |
− | <p>Natively, this promoter activates the transcription of the polyhedrin gene (polh), a major occlusion-body matrix protein expressed during the very late phase of infection.</p> | + | <p align="justify">Natively, this promoter activates the transcription of the polyhedrin gene (polh), a major occlusion-body matrix protein expressed during the very late phase of infection.</p> |
| <img src="https://static.igem.org/mediawiki/2015/e/e5/Tec-Monterrey_PPH_Map.png" alt="PPH Map" class="img-responsive"> | | <img src="https://static.igem.org/mediawiki/2015/e/e5/Tec-Monterrey_PPH_Map.png" alt="PPH Map" class="img-responsive"> |
| | | |
− | <h5>OpIE2 promoter <a href="http://parts.igem.org/Part:BBa_K1734001">(BBa_K1734001)</a></h5> | + | <strong><h3>OpIE2 promoter <a href="http://parts.igem.org/Part:BBa_K1734001">(BBa_K1734001)</a></h3></strong> |
− | <p>The immediate-early 2 promoter from the multicapsid nucleopolyhedrosis virus Orgyia pseudotsugata (OpIE2) is a constitutive promoter. Usually is used in nonlytic gene expression systems, but can be used with the baculovirus expression vector system (BEVS) methodology as well.</p> | + | <p align="justify">The immediate-early 2 promoter from the multicapsid nucleopolyhedrosis virus Orgyia pseudotsugata (OpIE2) is a constitutive promoter. Usually is used in nonlytic gene expression systems, but can be used with the baculovirus expression vector system (BEVS) methodology as well.</p> |
| <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_OpIE2_Map.png" alt="OpIE2 Map" class="img-responsive"> | | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_OpIE2_Map.png" alt="OpIE2 Map" class="img-responsive"> |
| | | |
− | <h5>Polyhedrin promoter + Mellitin’s signal Peptide <a href="http://parts.igem.org/Part:BBa_K1734002">(BBa_K1734002)</a></h5> | + | <strong><h3>Polyhedrin promoter + Mellitin’s signal Peptide <a href="http://parts.igem.org/Part:BBa_K1734002">(BBa_K1734002)</a></h3></strong> |
− | <p>The biobrick contains the polyhedrin promoter from the baculovirus Autographa californica. After the promoter there is a secretion signal sequence of the protein Mellitin from the organism Abis mellifera (Honeybee).</p> | + | <p align="justify">The biobrick contains the polyhedrin promoter from the baculovirus Autographa californica. After the promoter there is a secretion signal sequence of the protein Mellitin from the organism Abis mellifera (Honeybee).</p> |
| <img src="https://static.igem.org/mediawiki/2015/6/63/Tec-Monterrey_PPH-HBM_Map.png" alt="PPH-HBM Map" class="img-responsive"> | | <img src="https://static.igem.org/mediawiki/2015/6/63/Tec-Monterrey_PPH-HBM_Map.png" alt="PPH-HBM Map" class="img-responsive"> |
| | | |
− | <h5>Polyhedrin promoter + Lysozyme’s signal peptide <a href="http://parts.igem.org/Part:BBa_K1734003">(BBa_K1734003)</a></h5> | + | <strong><h3>Polyhedrin promoter + Lysozyme’s signal peptide <a href="http://parts.igem.org/Part:BBa_K1734003">(BBa_K1734003)</a></h3></strong> |
− | <p>The biobrick contains the polyhedrin promoter from the baculovirus Autographa californica. After the promoter there is a secretion signal sequence of the protein lysozyme from the organism Gallus gallus (chicken).</p> | + | <p align="justify">The biobrick contains the polyhedrin promoter from the baculovirus Autographa californica. After the promoter there is a secretion signal sequence of the protein lysozyme from the organism Gallus gallus (chicken).</p> |
| <img class="img-responsive" src="https://static.igem.org/mediawiki/2015/5/57/Tec-Monterrey_PPH-CL_Map.png" alt="PPH-CL Map"> | | <img class="img-responsive" src="https://static.igem.org/mediawiki/2015/5/57/Tec-Monterrey_PPH-CL_Map.png" alt="PPH-CL Map"> |
| | | |
− | <h5>Nanoluc (Codon optimized for Sf9 cells) <a href="http://parts.igem.org/Part:BBa_K1734004">(BBa_K1734004)</a></h5> | + | <strong><h3>Nanoluc (Codon optimized for Sf9 cells) <a href="http://parts.igem.org/Part:BBa_K1734004">(BBa_K1734004)</a></h3></strong> |
− | <p>Nluc luciferase is an enzyme that was engineered to work as a luminescent reporter weighing 19.1 kDa. This protein uses fumarizine as novel substrate to produce a high intensity glow-type luminescence. These reactions are ATP-independent, trying to obtain the maximal assay sensitivity.</p> | + | <p align="justify">Nluc luciferase is an enzyme that was engineered to work as a luminescent reporter weighing 19.1 kDa. This protein uses fumarizine as novel substrate to produce a high intensity glow-type luminescence. These reactions are ATP-independent, trying to obtain the maximal assay sensitivity.</p> |
| <img src="https://static.igem.org/mediawiki/2015/f/fb/Tec-Monterrey_Nanoluc_Map.png" alt="Nanoluc Map" class="img-responsive"> | | <img src="https://static.igem.org/mediawiki/2015/f/fb/Tec-Monterrey_Nanoluc_Map.png" alt="Nanoluc Map" class="img-responsive"> |
| | | |
− | <h5>6xHis-T24-Nanoluc <a href="http://parts.igem.org/Part:BBa_K1734006">(BBa_K1734006)</a></h5> | + | <strong><h3>6xHis-T24-Nanoluc <a href="http://parts.igem.org/Part:BBa_K1734006">(BBa_K1734006)</a></h3></strong> |
− | <p>This part encodes a sequence capable to add a purification tag (6X His) at the 3’ terminus of a desired protein. Furthermore, by using the reporter gene (nanoluc) it’s possible to quantify indirectly the protein concentration. The T2A sequence cleaves the protein, producing the protein of interest tagged with HisTag and nanoluc separately. This part has been codon optimized for Spodoptera frugiperda (Sf9).</p> | + | <p align="justify">This part encodes a sequence capable to add a purification tag (6X His) at the 3’ terminus of a desired protein. Furthermore, by using the reporter gene (nanoluc) it’s possible to quantify indirectly the protein concentration. The T2A sequence cleaves the protein, producing the protein of interest tagged with HisTag and nanoluc separately. This part has been codon optimized for Spodoptera frugiperda (Sf9).</p> |
| <img src="https://static.igem.org/mediawiki/2015/e/e9/Tec-Monterrey_6xHIS-T2A-Nanoluc_Map.png" alt="6xHIS-T2A-Nanoluc Map" class="img-responsive"/> | | <img src="https://static.igem.org/mediawiki/2015/e/e9/Tec-Monterrey_6xHIS-T2A-Nanoluc_Map.png" alt="6xHIS-T2A-Nanoluc Map" class="img-responsive"/> |
| </article> | | </article> |
| | | |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="protocols">
| + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1"> |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | |
− | </article>
| + | |
− | | + | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2"> | + | |
| <h2>Protocols</h2> | | <h2>Protocols</h2> |
| <br></br> | | <br></br> |
Line 1,447: |
Line 1,453: |
| </article> | | </article> |
| | | |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="results"> | + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1"> |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | <h1>Discussion of Results</h1> |
| + | <p>The plasmid C2 is composed of a pPH promoter, a secretion signal Honey Bee Melittin (HBM), two reporter proteins, Nanoluc and RFP divided by the T2A cleavage peptide for bicistronic vectors. |
| + | These results confirm the activity of the pPH promoter at 72 h post-transfection. They also confirm the activity of the secretion peptide HBM that was fused to the reporter protein Nanoluc. |
| + | The observed data indicates the predominant presence of Nanoluc in the supernatant due to the secretion signal. Also we found luminescence in the interior of the cells but the signal was 86 times lower. We estimate a percentage of secretion efficiency of 98.85%</p> |
| + | <div class="row" style="text-align: center"> |
| + | <br/> |
| + | <table class="table"> |
| + | <tr> |
| + | <th>Experiment</th> |
| + | <th>Luminescence of supernatant</th> |
| + | <th>Luminescence of lysate</th> |
| + | <th>Efficiency secretion</th> |
| + | </tr> |
| + | <tr> |
| + | <td>1 with C2</td> |
| + | <td>102006.667</td> |
| + | <td>1176.667</td> |
| + | <td>98.85%</td> |
| + | </tr> |
| + | <tr> |
| + | <td>2 with C2</td> |
| + | <td>122766.667</td> |
| + | <td>1434.667</td> |
| + | <td>98.85%</td> |
| + | </tr> |
| + | </table> |
| + | <strong>Table 2. Efficiency of secretion signal HBM.</strong> |
| + | </div> |
| + | <br/> |
| + | <p> |
| + | Since the fluorescence of RFP wasn’t detected, we assume that the T2A is not working in its cleavage mechanism which means that the RFP probably continued to be fused with Nanoluc by the T2A. We conclude that the T2A doesn’t work in Sf9 cells but we’ll do more experiments to confirm the size of the complex/fused protein. We’d also continue to study this mechanism because the hydrolysis of the peptidyl:glycyl-tRNA ester linkage was not completely understood.</p> |
| </article> | | </article> |
| | | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2"> | + | <article class="col-xs-12 col-sm-12 col-md-10 col-md-offset-1"> |
− | <h1>Results</h1> | + | <h1>References</h1> |
− | </article>
| + | <ol style="list-style:decimal;font-size:14px;"> |
− | | + | <li>Drugmand, J.-C., Schneider, Y.-J., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140-1157. doi:http://dx.doi.org/10.1016/j.biotechadv.2011.09.014</li> |
− | | + | <li>Fernandes, F., Vidigal, J., Dias, M. M., Prather, K. L. J., Coroadinha, A. S., Teixeira, A. P., & Alves, P. M. (2012). Flipase-mediated cassette exchange in Sf9 insect cells for stable gene expression.Biotechnology and Bioengineering, 109(11), 2836-2844. doi:10.1002/bit.24542</li> |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="discussion">
| + | <li>Greene, J. (2004). Host Cell Compatibility in Protein Expression. En P. Balbás, & A. Lorence, Recombinant Gene Expression (págs. 3-14). USA: Humana Press</li> |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | <li>Invitrogen. (2015). Guide to Baculovirus Expression Vector System (BEVS) and Insect Cell Culture Techniques. Obtenido de Invitrogen: https://tools.thermofisher.com/content/sfs/manuals/bevtest.pdf</li> |
− | </article>
| + | <li>Jardin, B. A., Montes, J., Lanthier, S., Tran, R., & Elias, C. (2007). High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: Comparison to a batch Sf-9-BEV system. Biotechnology and Bioengineering, 97(2), 332-345. doi:10.1002/bit.21224</li> |
− | | + | <li>Kempf, J., Snook, L. A., Vonesch, J.-L., Dahms, T. E. S., Pattus, F., & Massotte, D. (2002). Expression of the human μ opioid receptor in a stable Sf9 cell line. Journal of Biotechnology, 95(2), 181-187. doi:http://dx.doi.org/10.1016/S0168-1656(02)00008-1 |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2">
| + | Shen, X., Hacker, D. L., Baldi, L., & Wurm, F. M. (2014). Virus-free transient protein production in Sf9 cells. Journal of Biotechnology, 171, 61-70. doi:http://dx.doi.org/10.1016/j.jbiotec.2013.11.018</li> |
− | <h1>Discussion</h1>
| + | <li>magghe, G., Goodman, C., & Stanley, D. (2009). Insect cell culture and applications to research and pest management. In Vitro Cellular & Developmental Biology - Animal, 45(3-4), 93-105. doi:10.1007/s11626-009-9181-x</li> |
− | </article>
| + | </ol> |
− | | + | |
− | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="conclusions">
| + | |
− | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive">
| + | |
− | </article>
| + | |
− | | + | |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2">
| + | |
− | <h1>Conclusions</h1> | + | |
| </article> | | </article> |
| | | |
| <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="references"> | | <article class="col-xs-6 col-cx-offset-3 col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4" id="references"> |
| <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive"> | | <img src="https://static.igem.org/mediawiki/2015/1/1a/Tec-Monterrey_Maripa-7fbacb.png" class="img-responsive"> |
− | </article>
| |
− |
| |
− | <article class="col-xs-12 col-sm-12 col-md-8 col-md-offset-2">
| |
− | <h1>References</h1>
| |
| </article> | | </article> |
| | | |