Difference between revisions of "Team:Northeastern Boston/Description"

 
(6 intermediate revisions by the same user not shown)
Line 82: Line 82:
 
  </div>
 
  </div>
 
  <div class='content'>
 
  <div class='content'>
  <div id='page-header__notebook' class='page-header'>
+
  <div id='page-header__project' class='page-header'>
 
  <h1 class="page-header__title" align="left" style="border-width:0">OUR PROJECT</h1>
 
  <h1 class="page-header__title" align="left" style="border-width:0">OUR PROJECT</h1>
 
  </div>
 
  </div>
Line 334: Line 334:
 
<div class="minimal-dropdown__content hidden">
 
<div class="minimal-dropdown__content hidden">
  
<p>Northeastern 2015 set out for the highest protein expression possible. The rationale for this approach was to counteract the typically low nuclear expression levels of heterologous proteins in <i>C. reinhardtii</i>. Therefore, the designed novel plasmid used <a href="http://parts.igem.org/Part:BBa_K1547005" target="_blank">pPsaD</a>, a very strong promoter. While it was possible to make all the parts, it was not ultimately possible to make the </p>
+
<p>Northeastern 2015 set out for the highest protein expression possible. The rationale for this approach was to counteract the typically low nuclear expression levels of heterologous proteins in <i>C. reinhardtii</i>. Therefore, the designed novel plasmid used <a href="http://parts.igem.org/Part:BBa_K1547005" target="_blank">pPsaD</a>, a very strong promoter. While it was possible to make all the parts, the Gibson repeatedly failed.</p>
  
<p>We then shifted towards adaption of a plasmid from the Chlamy Collection: pOpt_mVenus. By surrounding the first promoter and first intron with the iGEM prefix and suffix, we created an iGEM compatible protein expression plasmid. In this way, teams can remove the suffix and replace it with a codon-optimized coding sequence for heterologous proteins of interest.</p>
+
<p>We then shifted towards adaption of a plasmid from the Chlamy Collection: pOpt_mVenus. By surrounding the first promoter with the iGEM prefix and suffix, we created an iGEM compatible protein expression <a href="https://2015.igem.org/Team:Northeastern_Boston/Design" target="_blank">plasmid</a>. In this way, teams can remove the suffix and replace it with a codon-optimized coding sequence for heterologous proteins of interest, or remove the promoter region entirely, testing alternate promoters and coding sequences upstream of a hygromycin B selection cassette.</p>
 +
 
 +
<p>Genetic engineering of microalgae is not new. <i>C. reinhardtii</i>, in particular, has been explored as a platform for heterologous proteins for years but to a far lesser extent than mammalian cells or higher-order plants. Although they're difficult to engineer, microalgae are poised to disrupt biofuel, agriculture, and pharmaceuticals. With their primary reliance on CO<sub>2</sub> and their capacity for producing complex proteins, microalgae like <i>C. reinhardtii</i> represent the chassis of the future.</p>
  
 
</div>
 
</div>

Latest revision as of 17:00, 1 October 2015

Overview

The Need

Some Solutions

A Green Safety Net

Cost/Benefit

Approach