Difference between revisions of "Team:NJU-China/signaling"
Eldronzhou (Talk | contribs) |
|||
(23 intermediate revisions by 2 users not shown) | |||
Line 200: | Line 200: | ||
<body class="index" data-view="index"> | <body class="index" data-view="index"> | ||
<div class="content"> | <div class="content"> | ||
− | <nav> | + | <nav style="height:80px"> |
− | <ul> | + | <ul style="margin-top:10px"> |
<li><a class="button" href="#detail" style="font-weight:bold;font-family:Microsoft YaHei">content</a></li> | <li><a class="button" href="#detail" style="font-weight:bold;font-family:Microsoft YaHei">content</a></li> | ||
</ul> | </ul> | ||
Line 241: | Line 241: | ||
<TABLE borderColor=#00ff99 height="100%" width="100%" border=0 style="table-layout:fixed"> | <TABLE borderColor=#00ff99 height="100%" width="100%" border=0 style="table-layout:fixed"> | ||
<TR height="100%"> | <TR height="100%"> | ||
− | <TD width="27%" bgColor=# | + | <TD width="27%" bgColor=#E6E8FA style="vertical-align:top"> |
− | + | </br> | |
− | <li><a href="https://2015.igem.org/Team:NJU-China" style="font-weight:bold;font-family:幼圆 | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Home</a></li> |
− | <li><a href="https://2015.igem.org/NJU-China- | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-background.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Background</a></li> |
− | <li><a href="https://2015.igem.org/NJU-China-project.html" style="font-weight:bold;font-family:幼圆;font- | + | <div style="line-height:250%;margin-left:10%" id="main1" onClick="document.all.child0.style.display=(document.all.child0.style.display =='none')?'':'none'" ><a href="#" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Project</a></div> |
− | < | + | <div id="child0" style="display:none"> |
− | + | <ul> | |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China/Design" style="font-weight:bold;font-family:幼圆;color:black">design</a></li> | |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-project/result.html" style="font-weight:bold;font-family:幼圆;color:black">results</a></li> | |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-project/conclusion.html" style="font-weight:bold;font-family:幼圆;color:black">conclusion</a></li> | |
− | </li></ | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-project/future work.html" style="font-weight:bold;font-family:幼圆;color:black">future work</a></li> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/Team:NJU-China/Practices" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Human Practice</a></li | + | </ul> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/NJU-China-parts.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Parts</a></li | + | </div> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/NJU-China-team.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Team</a></li | + | <div style="line-height:250%;margin-left:10%" id="main1" onClick="document.all.child1.style.display=(document.all.child1.style.display =='none')?'':'none'" ><a href="#" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Model</a></div> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/ | + | <div id="child1" style="display:none"> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/Team:NJU-China/Collaborations" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black"> | + | <ul> |
− | <li style="line-height:250%"><a href="https://2015.igem.org/NJU-China-safty.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Safety</a></li | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-model.html" style="font-weight:bold;font-family:幼圆;color:black">Delivery model</a></li> |
− | < | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China/RNAi" style="font-weight:bold;font-family:幼圆;color:black">RNAi model</a></li> |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China/signaling" style="font-weight:bold;font-family:幼圆;color:black">Signaling</a></li> | |
− | + | </ul> | |
− | + | </div> | |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China/Practices" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Human Practice</a></li> | |
− | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-parts.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Parts</a></li> | |
− | </ | + | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-team.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Team</a></li> |
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-attribution.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Attribution</a></li> | ||
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/Team:NJU-China/Collaborations" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Collaborations</a></li> | ||
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-safty.html" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Safety</a></li> | ||
+ | <div style="line-height:250%;margin-left:10%" id="main2" onClick="document.all.child2.style.display=(document.all.child2.style.display =='none')?'':'none'" > <a href="#" style="font-weight:bold;font-family:幼圆;font-size:25px;color:black">Notebook </div> | ||
+ | <div id="child2" style="display:none"> | ||
+ | <ul> | ||
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-notebook.html#methods" style="font-weight:bold;font-family:幼圆;font-size:20px;color:black">Methods</a></li> | ||
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-notebook.html#protocal" style="font-weight:bold;font-family:幼圆;font-size:20px;color:black">Protocal</a></li> | ||
+ | <li style="line-height:250%;margin-left:10%"><a href="https://2015.igem.org/NJU-China-notebook.html#notebook" style="font-weight:bold;font-family:幼圆;font-size:20px;color:black">Notebook</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
− | |||
</TD> | </TD> | ||
<TD width="73%" bgColor=#FFFFFF style="vertical-align:top;padding-left:80px;padding-right:80px;padding-top:50px;padding-bottom:50px;word-wrap:break-word;"> | <TD width="73%" bgColor=#FFFFFF style="vertical-align:top;padding-left:80px;padding-right:80px;padding-top:50px;padding-bottom:50px;word-wrap:break-word;"> | ||
− | + | <h1> 3 Signaling module </h1> | |
<h2> 3.1 Introduction </h2> | <h2> 3.1 Introduction </h2> | ||
− | + | ||
In our laboratory work, we performed CPP tests to explore the impact of downregulating | In our laboratory work, we performed CPP tests to explore the impact of downregulating | ||
Line 292: | Line 302: | ||
<br><br> | <br><br> | ||
− | + | ||
<B> | <B> | ||
Line 312: | Line 322: | ||
<!--插入第八张图--> <img src="https://static.igem.org/mediawiki/2015/e/ec/NJU-China- | <!--插入第八张图--> <img src="https://static.igem.org/mediawiki/2015/e/ec/NJU-China- | ||
− | Model_Figure8.jpg"> <br><br> | + | Model_Figure8.jpg" style="width:600px" > <br><br> |
Figure 8. Reward pathway of acute morphine administration. We focused on activation of | Figure 8. Reward pathway of acute morphine administration. We focused on activation of | ||
Line 329: | Line 339: | ||
− | |||
<B> We used both deterministic and stochastic models to describe the activation of GPCR | <B> We used both deterministic and stochastic models to describe the activation of GPCR | ||
Line 343: | Line 352: | ||
<br><br> | <br><br> | ||
− | + | ||
Broadly, mathematical models of biochemical reactions can be divided into two | Broadly, mathematical models of biochemical reactions can be divided into two | ||
Line 365: | Line 374: | ||
− | |||
MOR belongs to the class A (Rhodopsin) family of heterotrimeric Gi/o protein-coupled | MOR belongs to the class A (Rhodopsin) family of heterotrimeric Gi/o protein-coupled | ||
Line 379: | Line 387: | ||
− | + | ||
Deterministic models were applied to describe the biochemical reactions occurring in | Deterministic models were applied to describe the biochemical reactions occurring in | ||
Line 393: | Line 401: | ||
− | <!-- 插入第九张图> <img src="https://static.igem.org/mediawiki/2015/e/e3/NJU-China- | + | <!-- 插入第九张图 --> <img src="https://static.igem.org/mediawiki/2015/e/e3/NJU-China- |
− | Model_Figure9.jpg"> <br><br> | + | Model_Figure9.jpg" style="width:600px" > <br><br> |
Line 407: | Line 415: | ||
<h3> 3.2.2 Modeling adenylate cyclase inhibtion </h3> | <h3> 3.2.2 Modeling adenylate cyclase inhibtion </h3> | ||
− | |||
The concentration of second messenger is a significant indicator of excitability of | The concentration of second messenger is a significant indicator of excitability of | ||
Line 419: | Line 426: | ||
<br><br> | <br><br> | ||
− | + | ||
AC1/8 is a type of adenylate cyclases involved in the signaling of the acute morphine | AC1/8 is a type of adenylate cyclases involved in the signaling of the acute morphine | ||
Line 436: | Line 443: | ||
<!-- 插入第十张图 --> <img src="https://static.igem.org/mediawiki/2015/7/78/NJU-China- | <!-- 插入第十张图 --> <img src="https://static.igem.org/mediawiki/2015/7/78/NJU-China- | ||
− | Model_Figure10.jpg"> <br><br> | + | Model_Figure10.jpg" style="width:400px" > <br><br> |
+ | |||
− | |||
Figure 10. Reaction schemes for inhibition of AC in simulation. Reversible reactions | Figure 10. Reaction schemes for inhibition of AC in simulation. Reversible reactions | ||
Line 450: | Line 457: | ||
<h3> 3.2.3 Modeling GABA vesicle releases </h3> | <h3> 3.2.3 Modeling GABA vesicle releases </h3> | ||
− | |||
A stochastic model was applied to describe the random behavior of neurotransmitter | A stochastic model was applied to describe the random behavior of neurotransmitter | ||
Line 481: | Line 487: | ||
<!-- 插入第十一张图 --> <img src="https://static.igem.org/mediawiki/2015/1/16/NJU-China- | <!-- 插入第十一张图 --> <img src="https://static.igem.org/mediawiki/2015/1/16/NJU-China- | ||
− | Model_Figure11.jpg"> <br><br> | + | Model_Figure11.jpg" style="width:600px" > <br><br> |
Line 490: | Line 496: | ||
<h3> 3.2.4 Gillespie’s algorithm </h3> | <h3> 3.2.4 Gillespie’s algorithm </h3> | ||
− | + | ||
When spatially restricted reactions, such as the release of neurotransmitter vesicles, | When spatially restricted reactions, such as the release of neurotransmitter vesicles, | ||
Line 516: | Line 522: | ||
<h2> 3.3 Results </h3> | <h2> 3.3 Results </h3> | ||
− | |||
The simulation results revealed the kinetics of MOR activation in case and control | The simulation results revealed the kinetics of MOR activation in case and control | ||
Line 542: | Line 547: | ||
<!-- 插入第十二张图 --> <img src="https://static.igem.org/mediawiki/2015/b/b3/NJU-China- | <!-- 插入第十二张图 --> <img src="https://static.igem.org/mediawiki/2015/b/b3/NJU-China- | ||
− | Model_Figure12.jpg"> <br><br> | + | Model_Figure12.jpg" > <br><br> |
Line 555: | Line 560: | ||
<br><br> | <br><br> | ||
− | + | ||
The primary effector of activated Gα subunit is AC. The activation degree of AC | The primary effector of activated Gα subunit is AC. The activation degree of AC | ||
Line 572: | Line 577: | ||
<!-- 插入第十三张图 --> <img src="https://static.igem.org/mediawiki/2015/d/d4/NJU-China- | <!-- 插入第十三张图 --> <img src="https://static.igem.org/mediawiki/2015/d/d4/NJU-China- | ||
− | Model_Figure13.jpg"> <br><br> | + | Model_Figure13.jpg" > <br><br> |
Line 583: | Line 588: | ||
<br><br> | <br><br> | ||
− | + | ||
<B> Activation of wild type MOR protein inhibited over 25% of AC, and relative cellular | <B> Activation of wild type MOR protein inhibited over 25% of AC, and relative cellular | ||
Line 598: | Line 603: | ||
<br><br> | <br><br> | ||
− | + | ||
Finally, we explored the relationship between MOR activation and GABA release. The wild | Finally, we explored the relationship between MOR activation and GABA release. The wild | ||
Line 618: | Line 623: | ||
<!-- 插入第十四张图 --> <img src="https://static.igem.org/mediawiki/2015/5/51/NJU-China- | <!-- 插入第十四张图 --> <img src="https://static.igem.org/mediawiki/2015/5/51/NJU-China- | ||
− | Model_Figure14.jpg"> <br><br> | + | Model_Figure14.jpg" style="width:600px" > <br><br> |
Line 635: | Line 640: | ||
<br><br> | <br><br> | ||
− | <h2> 3.4 Conclusion and remarks </ | + | <h2> 3.4 Conclusion and remarks </h2> |
<B> | <B> | ||
− | + | ||
In this module, we used deterministic and stochastic methods to model the cell | In this module, we used deterministic and stochastic methods to model the cell | ||
Line 652: | Line 657: | ||
</B> | </B> | ||
− | <h2> 3.5 Model equations, variables and parameters </ | + | <h2> 3.5 Model equations, variables and parameters </h2> |
− | |||
The modeling details of the activation of MOR protein and inhibition of AC are | The modeling details of the activation of MOR protein and inhibition of AC are | ||
Line 676: | Line 680: | ||
<br><br> | <br><br> | ||
− | |||
These parameters, as well as initial conditions, can be accessed in our uploaded files | These parameters, as well as initial conditions, can be accessed in our uploaded files | ||
Line 687: | Line 690: | ||
<h3> 3.5.1 Activation of MOR </h3> | <h3> 3.5.1 Activation of MOR </h3> | ||
− | Model Parameters | + | Model Parameters: |
<br><br> | <br><br> | ||
− | + | <img src="https://static.igem.org/mediawiki/2015/d/de/NJU-China-model-sig-1.jpg" > | |
+ | |||
+ | <br><br> | ||
???: Although activation of MOR has not been modeled yet, we use activation of | ???: Although activation of MOR has not been modeled yet, we use activation of | ||
Line 699: | Line 704: | ||
<br><br> | <br><br> | ||
− | Model Equations | + | Model Equations: |
+ | |||
+ | <table> | ||
+ | <tr> | ||
+ | <td> | ||
<!-- 插入第一张公式 --> <img src="https://static.igem.org/mediawiki/2015/b/ba/NJU-China- | <!-- 插入第一张公式 --> <img src="https://static.igem.org/mediawiki/2015/b/ba/NJU-China- | ||
− | Equation_Sig_1.jpg"> <br><br> | + | Equation_Sig_1.jpg" style="width:500px"> </td> <br><br> |
+ | |||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
<!-- 插入第二张公式 --> <img src="https://static.igem.org/mediawiki/2015/0/0b/NJU-China- | <!-- 插入第二张公式 --> <img src="https://static.igem.org/mediawiki/2015/0/0b/NJU-China- | ||
− | Equation_Sig_2.jpg"> <br><br> | + | Equation_Sig_2.jpg" style="width:500px" > </td> <br><br> |
+ | </tr> | ||
+ | |||
+ | </table> | ||
<h3> 3.5.2 Activation of MOR </h3> | <h3> 3.5.2 Activation of MOR </h3> | ||
− | Model Parameters | + | Model Parameters: |
<br><br> | <br><br> | ||
− | + | <img src = "https://static.igem.org/mediawiki/2015/f/f2/NJU-China-model-sig-2.jpg" > | |
<br><br> | <br><br> | ||
Line 729: | Line 745: | ||
− | Model Equations | + | Model Equations: |
− | < | + | <table> |
− | + | <img src="https://static.igem.org/mediawiki/2015/a/a7/NJU-China- | |
+ | Equation_Sig_3.jpg", style="width:500px"> <br><br> | ||
+ | |||
+ | </table> | ||
<h3> 3.5.3 GABA release </h3> | <h3> 3.5.3 GABA release </h3> | ||
Line 742: | Line 761: | ||
<br><br> | <br><br> | ||
− | + | <img src = "https://static.igem.org/mediawiki/2015/1/19/NJU-China-model-sig-3.jpg" > | |
<br><br> | <br><br> | ||
References: <br> | References: <br> | ||
− | 1. Fields, H.L. and Margolis, E.B. (2015) Understanding opioid reward. Trends in | + | 1.Fields, H.L. and Margolis, E.B. (2015) Understanding opioid reward. Trends in |
neurosciences, 38, 217-225. <br> | neurosciences, 38, 217-225. <br> | ||
− | 2. Sotomayor, R., Forray, M.I. and Gysling, K. (2005) Acute morphine | + | 2.Sotomayor, R., Forray, M.I. and Gysling, K. (2005) Acute morphine administration |
− | + | increases extracellular DA levels in the rat lateral septum by decreasing the GABAergic | |
− | + | inhibitory tone in the ventral tegmental area. Journal of neuroscience research, 81, | |
− | + | 132-139. <br> | |
− | 3. Eungdamrong, N.J. and Iyengar, R. (2004) Computational approaches for modeling | + | 3.Eungdamrong, N.J. and Iyengar, R. (2004) Computational approaches for modeling |
regulatory cellular networks. Trends in cell biology, 14, 661-669. <br> | regulatory cellular networks. Trends in cell biology, 14, 661-669. <br> | ||
− | 4. Waldhoer, M., Bartlett, S.E. and Whistler, J.L. (2004) Opioid receptors. Annual | + | 4.Waldhoer, M., Bartlett, S.E. and Whistler, J.L. (2004) Opioid receptors. Annual |
Review of Biochemistry, 73, 953-990. <br> | Review of Biochemistry, 73, 953-990. <br> | ||
− | 5. Bhalla, U.S. and Iyengar, R. (1999) Emergent properties of networks of | + | 5.Bhalla, U.S. and Iyengar, R. (1999) Emergent properties of networks of biological |
+ | |||
+ | signaling pathways. Science, 283, 381-387. <br> | ||
+ | 6.Nestler, E.J. and Aghajanian, G.K. (1997) Molecular and cellular basis of addiction. | ||
+ | |||
+ | Science, 278, 58-63. <br> | ||
+ | 7.Charalampous, K.D. and Askew, W.E. (1977) Cerebellar cAMP levels following acute and | ||
+ | |||
+ | chronic morphine administration. Can J Physiol Pharmacol, 55, 117-120. <br> | ||
+ | 8.Ribrault, C., Sekimoto, K. and Triller, A. (2011) From the stochasticity of molecular | ||
+ | |||
+ | processes to the variability of synaptic transmission. Nature reviews. Neuroscience, | ||
+ | |||
+ | 12, 375-387. <br> | ||
+ | 9.Stephens, G.J. (2009) G-protein-coupled-receptor-mediated presynaptic inhibition in | ||
+ | |||
+ | the cerebellum. Trends Pharmacol Sci, 30, 421-430. <br> | ||
+ | 10.Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions. | ||
+ | |||
+ | The Journal of Physical Chemistry, 81, 2340-2361. <br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Latest revision as of 03:27, 3 October 2015
|
3 Signaling module3.1 IntroductionIn our laboratory work, we performed CPP tests to explore the impact of downregulating MOR protein on mouse behavior after morphine administration, which is the ultimate goal of our project. In this module, computational and systems biology approaches were applied to examine the root of behavior changes quantitatively at the molecular level. The most important brain reward circuit involves dopamine-containing neurons in the VTA of the midbrain. Morphine can cause indirect excitation of VTA dopamine neurons by reducing inhibitory synaptic transmission mediated by GABAergic neurons [1,2].We modeled the signaling network to investigate the emergent properties of the reward pathway. By comparing the activation degree of the reward pathway before and after downregulating MOR protein levels, we could have a better mechanistic understanding of drug effects. Although we did not perform any experiment to support this modeling module, the methods and parameters we chose are grounded in literature reports. Figure 8. Reward pathway of acute morphine administration. We focused on activation of MOR, inhibition of AC and release of GABA vesicles in this module. The reference pathway and figure are adapted from Kyoto Encyclopedia of Genes and Genomes database (KEGG). 3.2 Model methodsWe used both deterministic and stochastic models to describe the activation of GPCR and release of GABA. In biological systems, signal transmission occurs primarily through two mechanisms: (i) mass-action laws governing protein synthesis, degradation and interactions; and (ii) standard Michaelis-Menten formulation for reactions catalyzed by enzymes [3].Broadly, mathematical models of biochemical reactions can be divided into two categories: deterministic systems and stochastic systems [3]. In deterministic models, the change in time of the components’ concentrations is completely determined by specifying the initial and boundary conditions; by contrast, the changes in concentrations of components with respect to time cannot be fully predicted in stochastic models [3]. In the previous two modules, we modeled the delivery device and RNA interference using deterministic models. 3.2.1 Modeling the activation of MORMOR belongs to the class A (Rhodopsin) family of heterotrimeric Gi/o protein-coupled receptors [4]. The binding of opioids to MOR activates the G protein, upon which both G-protein α and βγ subunits interact with multiple cellular effector systems. As the first step of signal transmission, the degree of activation of MOR in response to opioid has a direct and far-reaching influence on the behavior of mice.Deterministic models were applied to describe the biochemical reactions occurring in the diagram below. We used the Matlab Simbiology package to draw the diagram and to design the equation, the details of which are accessible on the uploaded files. This model was created on the basis of work by Bhalla and Iyengar on the activation of glutamate receptor [5]. Figure 9. Reaction schemes for the activation of MOR in the simulation. Reversible reactions are represented as bidirectional arrows; irreversible reactions, as unidirectional arrows. This figure is adapted from the literature [5]. 3.2.2 Modeling adenylate cyclase inhibtionThe concentration of second messenger is a significant indicator of excitability of GABAergic neurons. Thus, we chose to simulate cAMP levels and adenylate cyclase (AC) activity to determine the effect of downregulating MOR protein levels on morphine reward signaling networks.AC1/8 is a type of adenylate cyclases involved in the signaling of the acute morphine reward pathway [6]. When MOR is activated, the disassociated Gα subunit reacts with AC1/8 and subsequently inhibits its activity, leading to a decrease in cellular cAMP levels. The parameters of this model were primarily derived from the literature [5] with slight modifications to fit to the data presented in the literature [7]. Figure 10. Reaction schemes for inhibition of AC in simulation. Reversible reactions are represented as bidirectional arrows, and enzyme reactions are drawn as an arrow with two bends. AC: adenylate cyclase; PDE: phosphodiesterase. 3.2.3 Modeling GABA vesicle releasesA stochastic model was applied to describe the random behavior of neurotransmitter vesicles release [8]. GABA is an important inhibitory neurotransmitter, the level of which directly determines the firing rate of dopamine neurons and other physiological and behavioral statuses. The GABA synaptic vesicle cycle consists of three discrete processes: synthesis of GABA vesicles, docking of GABA vesicles at the inner membrane of presynapses and release of GABA vesicles reacting to a certain signal. The release of GABA vesicles is strictly regulated by cellular signaling networks. When Gi/o is activated and the cellular cAMP level drops, the release of GABA is inhibited. Many complicated mechanisms are involved in the inhibition of GABA release due to activation of Gi/o. Here, we simply studied the action potential-independent pathway of GABA release, through which the release of GABA is directly inhibited by activated Gβγ subunits [9].Figure 11. Schematic representation of GABA release in which four steps are modeled using mass action law and the stochastic method. 3.2.4 Gillespie’s algorithmWhen spatially restricted reactions, such as the release of neurotransmitter vesicles, are studied, the traditional deterministic model is no longer effective for ignoring the discrete nature of the problem [3]. Stochastic models convert reaction rates to probability, which allows users to explore the noise and randomness of signaling networks. A standard algorithm dealing with stochastic model is Gillespie’s algorithm. This algorithm starts with the initial condition for each molecule type in the reaction network. Then, Monte Carlo simulation is applied to generate some random variables and to calculate the smallest time interval in which the reaction will occur [3,10]. Finally, the number of molecules in the reaction network is updated, and the process is repeated. 3.3 Results
The simulation results revealed the kinetics of MOR activation in case and control
studies. In the CPP test, the Western blot result demonstrated that the relative level
of MOR protein after MOR-siRNA injection was 0.5.
Thus, the concentration of MOR protein was set at half of the level in the case
study.
3.5.2 Activation of MORModel Parameters:???: No literature has directly reported binding and disassociation constant of Gi to AC. Therefore, we use the binding and disassociation constant of Gs to AC as an approximation derived from literature[5]. Model Equations: 3.5.3 GABA releaseModel ParametersReferences: 1.Fields, H.L. and Margolis, E.B. (2015) Understanding opioid reward. Trends in neurosciences, 38, 217-225. 2.Sotomayor, R., Forray, M.I. and Gysling, K. (2005) Acute morphine administration increases extracellular DA levels in the rat lateral septum by decreasing the GABAergic inhibitory tone in the ventral tegmental area. Journal of neuroscience research, 81, 132-139. 3.Eungdamrong, N.J. and Iyengar, R. (2004) Computational approaches for modeling regulatory cellular networks. Trends in cell biology, 14, 661-669. 4.Waldhoer, M., Bartlett, S.E. and Whistler, J.L. (2004) Opioid receptors. Annual Review of Biochemistry, 73, 953-990. 5.Bhalla, U.S. and Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science, 283, 381-387. 6.Nestler, E.J. and Aghajanian, G.K. (1997) Molecular and cellular basis of addiction. Science, 278, 58-63. 7.Charalampous, K.D. and Askew, W.E. (1977) Cerebellar cAMP levels following acute and chronic morphine administration. Can J Physiol Pharmacol, 55, 117-120. 8.Ribrault, C., Sekimoto, K. and Triller, A. (2011) From the stochasticity of molecular processes to the variability of synaptic transmission. Nature reviews. Neuroscience, 12, 375-387. 9.Stephens, G.J. (2009) G-protein-coupled-receptor-mediated presynaptic inhibition in the cerebellum. Trends Pharmacol Sci, 30, 421-430. 10.Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340-2361. |