Difference between revisions of "Team:KU Leuven/Research/Methods"
(3 intermediate revisions by 3 users not shown) | |||
Line 42: | Line 42: | ||
#content { | #content { | ||
background-color:transparent; | background-color:transparent; | ||
+ | } | ||
+ | |||
+ | .summaryimg{ | ||
+ | opacity: 0.8; | ||
} | } | ||
Line 50: | Line 54: | ||
<div class="summaryheader"> | <div class="summaryheader"> | ||
<div class="summaryimg"> | <div class="summaryimg"> | ||
− | <img src="https://static.igem.org/mediawiki/2015/ | + | <img src="https://static.igem.org/mediawiki/2015/5/5b/KU_Leuven_Banner_Geel.jpg" width="100%"> |
<div class="head"> | <div class="head"> | ||
<h2> Methods </h2> | <h2> Methods </h2> | ||
Line 59: | Line 63: | ||
<div class ="summarytext1"> | <div class ="summarytext1"> | ||
<div class ="part"> | <div class ="part"> | ||
− | <p>On this page, you can find all | + | <p>On this page, you can find all the methods and protocols used in the lab to obtain our results. For some techniques we included some basic theory since it is a prerequisite to get acquainted with the details behind these techniques before using them. To learn more about them click the titles below.</p> |
</div> | </div> | ||
</div> | </div> | ||
Line 77: | Line 81: | ||
A genetic procedure for moving selectable mutations of interest, called the P1 transduction, was used. Since the packaging of the bacteriophage P1 is rather inaccurate, it will on occasion package the DNA of its bacterial host instead of its own phage chromosome. This implies that the lysate will contain either packaged phage or bacterial DNA. After infection of a second host with this lysate, a transfer of parts of the chromosome from the donor strain into the receiver strain will take place. Those DNA pieces can then recombine using the FRT sites and hereby be incorporated permanently into the chromosome of the new strain. Here, the recombination was triggered by selection on kanamycin. (reference 2) <br/> | A genetic procedure for moving selectable mutations of interest, called the P1 transduction, was used. Since the packaging of the bacteriophage P1 is rather inaccurate, it will on occasion package the DNA of its bacterial host instead of its own phage chromosome. This implies that the lysate will contain either packaged phage or bacterial DNA. After infection of a second host with this lysate, a transfer of parts of the chromosome from the donor strain into the receiver strain will take place. Those DNA pieces can then recombine using the FRT sites and hereby be incorporated permanently into the chromosome of the new strain. Here, the recombination was triggered by selection on kanamycin. (reference 2) <br/> | ||
<br/> | <br/> | ||
− | In general, we used three steps to obtain | + | In general, we used three steps to obtain the double knock-outs (Figure 1). In the first step, the kanamycin cassette of the <i>tar</i> knock-out strain was removed by flippase, coded on plasmid PCP20. Afterwards, the temperature sensitive plasmid was removed by growing the cells overnight at 42°C. In a third step, the <i>tar</i> knock-out strain was infected by lysate originating from the <i>tsr</i> and <i>cheZ</i> knock-out strains. After selection on kanamycin plates, we obtained the double knock-outs. These knock-outs were confirmed by PCR. For more information, please check our result page. <br/> |
Line 195: | Line 199: | ||
<p>The goal is to plot the absorbance of violacein against the concentration of OHHL around 0.04 mM </p> | <p>The goal is to plot the absorbance of violacein against the concentration of OHHL around 0.04 mM </p> | ||
<dl> | <dl> | ||
− | <dd>1. Make a OHHL stock solution of 10 mM</dd> | + | <dd>1. Make a OHHL stock solution of 10 mM.</dd> |
<dd>2. Make a dilution series of OHHL in LB medium. Take the further dilution with CV026 into account. </dd> | <dd>2. Make a dilution series of OHHL in LB medium. Take the further dilution with CV026 into account. </dd> | ||
− | <dd>3. Add <i>C. violaceum</i> CV026 in a 1:10 ratio to the end | + | <dd>3. Add <i>C. violaceum</i> CV026 in a 1:10 ratio to the end volume. </dd> |
− | <dd>4. Incubate for 24 hours at 30°C in a shaking incubator (200 rpm | + | <dd>4. Incubate for 24 hours at 30°C in a shaking incubator (200 rpm).</dd> |
<dd>5. Measure the OD (600 nm) value in 1 cm cuvettes.</dd> | <dd>5. Measure the OD (600 nm) value in 1 cm cuvettes.</dd> | ||
− | <dd>6. Take 1 mL of the mixture and centrifuge for 10 minutes at 13 000 rpm</dd> | + | <dd>6. Take 1 mL of the mixture and centrifuge for 10 minutes at 13 000 rpm.</dd> |
<dd>7. Discard the supernatant and dissolve the pellet in 500 µl dimethyl sulfoxide. Vortex the solution vigorously for 30 seconds to completely solubilize violacein. </dd> | <dd>7. Discard the supernatant and dissolve the pellet in 500 µl dimethyl sulfoxide. Vortex the solution vigorously for 30 seconds to completely solubilize violacein. </dd> | ||
<dd>8. Add 200 µl of the violacein-containing supernatant to a 96-well falcon microplate.</dd> | <dd>8. Add 200 µl of the violacein-containing supernatant to a 96-well falcon microplate.</dd> | ||
Line 954: | Line 958: | ||
<img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="95%"> | <img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="95%"> | ||
</div> | </div> | ||
+ | <div class="logonormal2"> | ||
<div id="gimv"> | <div id="gimv"> | ||
<a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a> | <a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a> | ||
</div> | </div> | ||
+ | <div class = "whiterow"></div> | ||
+ | <div id="sopach"> | ||
+ | <a href="http://www.sopachem.com/"><img src="https://static.igem.org/mediawiki/2015/5/55/KU_Leuven_Sopachem.jpeg" alt="Sopachem" width="95%"></a> | ||
+ | </div> | ||
+ | </div> | ||
<div id="machery"> | <div id="machery"> | ||
<a href="http://www.filterservice.be/"><img src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png" alt="Machery Nagel" width="95%"></a> | <a href="http://www.filterservice.be/"><img src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png" alt="Machery Nagel" width="95%"></a> |
Latest revision as of 09:34, 20 October 2015
Methods
On this page, you can find all the methods and protocols used in the lab to obtain our results. For some techniques we included some basic theory since it is a prerequisite to get acquainted with the details behind these techniques before using them. To learn more about them click the titles below.
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be