Difference between revisions of "Team:KU Leuven/Research/Results"
(5 intermediate revisions by one other user not shown) | |||
Line 486: | Line 486: | ||
</div></div> | </div></div> | ||
− | <p>In figure 20, our standard curve is plotted. A linear correlation between the absorbance and the concentration OHHL can be found. The variance of the technical replicates, visualised by the error bars, and the variance of the regression curve, shown by the R | + | <p>In figure 20, our standard curve is plotted. A linear correlation between the absorbance and the concentration OHHL can be found. The variance of the technical replicates, visualised by the error bars, and the variance of the regression curve, shown by the R<sup>2</sup> value, can be explained by pipetting and measuring errors. Also, working with biological cells generates a background noise. This standard curve could give an estimation of bacterial AHL production. But it is important to keep in mind that there is background noise. Please note that we only had two attemps to perform this experiment, the first time the broad range was investigated, the second time the more narrow range was investigated. Optimisation of this curve can be done by making more biological and technical replicas. |
</p> | </p> | ||
Line 509: | Line 509: | ||
</div> | </div> | ||
<div id="togglefive"> | <div id="togglefive"> | ||
+ | <p>In comparison to HPLC, the chosen method would be less time consuming without the need of specialized equipment. Due to a lack of time, we were not able to complete the plasmid assembly and therefore we could not quantify the amount of leucine produced by the designed bacteria. But we did an attempt to test the quantification method by making the standard curve. </p> | ||
<p> | <p> | ||
− | The standard curve from 0 to 100 µM did not give | + | The standard curve from 0 to 100 µM did not give clear signals, so the working method needs optimisation. Reasons for this result could be the use of different enzyms than mentioned in the article. Because the enzymes originate from other organisms than mentioned in Kugimiya and Fukada (2015), it is possible that the enzymes have another efficiency and as a consequence need another ratio substrate over enzyme. Additionally, we did not have the same equipment as described in the article. We had to manually pipet the luminol solution while in equipment described in the acticle this happens autimatically. Probably there was too much time between adding the luminol solution and measuring. |
− | < | + | </p> |
− | + | <p>Please note that we were only able to do one attempt on this experiment. | |
− | + | </p> | |
+ | |||
<br/> | <br/> | ||
<br/> | <br/> | ||
Line 957: | Line 959: | ||
<img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="95%"> | <img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="95%"> | ||
</div> | </div> | ||
+ | <div class="logonormal2"> | ||
<div id="gimv"> | <div id="gimv"> | ||
<a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a> | <a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a> | ||
</div> | </div> | ||
+ | <div class = "whiterow"></div> | ||
+ | <div id="sopach"> | ||
+ | <a href="http://www.sopachem.com/"><img src="https://static.igem.org/mediawiki/2015/5/55/KU_Leuven_Sopachem.jpeg" alt="Sopachem" width="95%"></a> | ||
+ | </div> | ||
+ | </div> | ||
<div id="machery"> | <div id="machery"> | ||
<a href="http://www.filterservice.be/"><img src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png" alt="Machery Nagel" width="95%"></a> | <a href="http://www.filterservice.be/"><img src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png" alt="Machery Nagel" width="95%"></a> |
Latest revision as of 09:35, 20 October 2015
Results
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be