Difference between revisions of "Team:Aalto-Helsinki/Kinetics"

(modified the site navigation to be responsive)
m (E. coli in italics)
 
(31 intermediate revisions by 7 users not shown)
Line 33: Line 33:
 
     color: black !important;
 
     color: black !important;
 
}
 
}
 +
 +
/* Let's hide the navbar when the device is small! */
 +
@media screen and (max-width: 760px) {
 +
  #sidenav { display: none; }
 +
}
 +
 
/* pictures */
 
/* pictures */
 
.vcenter {
 
.vcenter {
Line 43: Line 49:
 
   margin-top:5%;
 
   margin-top:5%;
 
}
 
}
 +
 +
.table thead tr > td {
 +
  background-color: white !important;
 +
}
 +
.table tbody tr > td {
 +
  background-color: white !important;
 +
}
 +
 +
/* Background pic */
 +
.compscreens {
 +
    background-repeat: repeat-y;
 +
    background-image: url("https://static.igem.org/mediawiki/2015/1/11/Aalto-Helsinki_modeling_background.png");
 +
    background-size: 100%;
 +
}
 +
 
</style>
 
</style>
  
 
       <ul id="sidenav" class="nav nav-stacked"><!-- nav-pills if we want rounded corners -->
 
       <ul id="sidenav" class="nav nav-stacked"><!-- nav-pills if we want rounded corners -->
 +
        <li><a href="#" data-scroll="kinetics"><h4></h4></a></li>
 
         <li><a href="#" data-scroll="atob"><h4>AtoB</h4></a></li>
 
         <li><a href="#" data-scroll="atob"><h4>AtoB</h4></a></li>
 
         <li><a href="#" data-scroll="fadb2"><h4>FadB2</h4></a></li>
 
         <li><a href="#" data-scroll="fadb2"><h4>FadB2</h4></a></li>
Line 52: Line 74:
 
         <li><a href="#" data-scroll="ter"><h4>Ter</h4></a></li>
 
         <li><a href="#" data-scroll="ter"><h4>Ter</h4></a></li>
 
         <li><a href="#" data-scroll="ycia"><h4>YciA</h4></a></li>
 
         <li><a href="#" data-scroll="ycia"><h4>YciA</h4></a></li>
         <li><a href="#" data-scroll="car"><h4>Car</h4></a></li>
+
         <li><a href="#" data-scroll="car"><h4>CAR</h4></a></li>
 
         <li><a href="#" data-scroll="sfp"><h4>Sfp</h4></a></li>
 
         <li><a href="#" data-scroll="sfp"><h4>Sfp</h4></a></li>
         <li><a href="#" data-scroll="ado"><h4>Ado</h4></a></li>
+
         <li><a href="#" data-scroll="ado"><h4>ADO</h4></a></li>
 
         <li><a href="#" data-scroll="other"><h4>Other<br/>constants</h4></a></li>
 
         <li><a href="#" data-scroll="other"><h4>Other<br/>constants</h4></a></li>
 +
        <li><a href="#" data-scroll="sources"><h4>Sources</h4></a></li>
 
         <li><a href="#"><h4 style="border-top:solid;">To the Top</h4></a></li>
 
         <li><a href="#"><h4 style="border-top:solid;">To the Top</h4></a></li>
 +
        <li><a href="https://2015.igem.org/Team:Aalto-Helsinki/Modeling_propane" ><h4>To the Parent Page</h4></a></li>
 
       </ul>
 
       </ul>
  
 
+
<div class="compscreens">
 
<div class = "inner-container" >
 
<div class = "inner-container" >
  
 
+
<section id="kinetics" data-anchor="kinetics">
 
<h1 id="kinetics">Kinetics</h1>
 
<h1 id="kinetics">Kinetics</h1>
  
<p>We modeled our enzyme reactions in propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in this kind of modeling and assumes that the reaction enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration. \( V_{max} \) tells us the maximum speed of the enzyme and \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration and \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes substrate to product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002).</p>
+
<p>We modeled our enzyme reactions in the propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in metabolical modeling of enzymes. Michaelis-Menten kinetics assumes that the reaction an enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration and \( V_{max} \) tells us the maximum speed of the enzyme. \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration. \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes the substrate to a product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example [1].</p>
  
<p style="color:gray">pic of our pathway here to make things more clear. Do we want pictures with highlited enzymes in every subcategory?</p>
+
<figure id="fig1" style="margin-bottom:3%;">
 +
<div style="margin-left:auto;margin-right:auto;"><a href="https://static.igem.org/mediawiki/2015/3/37/Aalto-Helsinki_pathway_horizontal_hbd.gif"><img src="https://static.igem.org/mediawiki/2015/3/37/Aalto-Helsinki_pathway_horizontal_hbd.gif" style="max-width:800px;" /></a></div>
 +
<figcaption><b>Figure 1:</b> Propane pathway.</figcaption>
 +
</figure>
  
 +
<p>We understand and accept the fact that the kinetic data we have used in our model is very rough, due to varying measurement conditions and the fact that the measurements have been done in vitro, whereas our system functions in vivo. However, we believe our model can give us more reliable information about the bottlenecks of the pathway than mere educated guesses.</p>
 +
 +
</section>
  
 
<!-- AtoB -->
 
<!-- AtoB -->
Line 76: Line 106:
 
<p>2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA</p>
 
<p>2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA</p>
  
<p>AtoB is native to <span style="font-style:italic">Escherichia Coli</span>. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one <span style="font-size:13px">(Vf/Vr: 22.3, Source: Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170)</span> we can approximate is as irreversible.</p>
+
<p>AtoB (acetyl-CoA C-acetyltransferase) is native to <span style="font-style:italic">Escherichia Coli</span>. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one (Vf/Vr: 22.3, Source: [2]) we can approximate is as irreversible.</p>
 
<p>Based on <a href="http://www.sciencedirect.com/science/article/pii/S0022283605000409">this</a> article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:</p>
 
<p>Based on <a href="http://www.sciencedirect.com/science/article/pii/S0022283605000409">this</a> article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:</p>
  
Line 94: Line 124:
 
       <td><p>\( K_{cat}^{AtoB} \)</p></td>
 
       <td><p>\( K_{cat}^{AtoB} \)</p></td>
 
       <td><p>10653 1/min</p></td>
 
       <td><p>10653 1/min</p></td>
       <td><p>Thiolases of Escherichia coli: purification and chain length specificities
+
       <td><p>[3] </p></td>
Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411 </p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 101: Line 130:
 
       <td><p>\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)</p></td>
 
       <td><p>0.00047 mol/l</p></td>
 
       <td><p>0.00047 mol/l</p></td>
       <td><p>Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170</p></td>
+
       <td><p>[2]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 117: Line 146:
 
<p>Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)</p>
 
<p>Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)</p>
  
<p>FadB2 is found from<span style="font-style:italic"> Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)</span>. The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.</p>
+
<p>FadB2 (3-hydroxybutyryl-CoA dehydrogenase) is found from<span style="font-style:italic"> Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)</span>. The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.</p>
  
<p>The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See <span style="font-size:13px">Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)</span> for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because we need to have that in the cell or otherwise it will die off. This yields us the following as our reaction rate equation.</p>
+
<p>The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See [1] for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because it needs to be fairly constant in the cell or otherwise the cell will die off. This yields us the following as our reaction rate equation.</p>
  
 
<p>\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}}
 
<p>\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}}
Line 138: Line 167:
 
       <td><p>\( K_{cat1}^{FadB2} \)</p></td>
 
       <td><p>\( K_{cat1}^{FadB2} \)</p></td>
 
       <td><p>0.677 1/min</p></td>
 
       <td><p>0.677 1/min</p></td>
       <td><p style=>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
       <td><p >[4]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 144: Line 173:
 
       <td><p>\( K_{cat2}^{FadB2} \)</p></td>
 
       <td><p>\( K_{cat2}^{FadB2} \)</p></td>
 
       <td><p>0.723 1/min</p></td>
 
       <td><p>0.723 1/min</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 151: Line 179:
 
       <td><p>\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>65.6 mmol/l</p></td>
 
       <td><p>65.6 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 158: Line 185:
 
       <td><p>\( K_{M}^{FadB2:NADPH} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:NADPH} \)</p></td>
 
       <td><p>50 mmol/l</p></td>
 
       <td><p>50 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 165: Line 191:
 
       <td><p>\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>43.5 mmol/l</p></td>
 
       <td><p>43.5 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 172: Line 197:
 
       <td><p>\( K_{M}^{FadB2:NADP^+} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:NADP^+} \)</p></td>
 
       <td><p>29.5 mmol/l</p></td>
 
       <td><p>29.5 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 189: Line 213:
 
<p>Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)</p>
 
<p>Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)</p>
  
<p>The enzyme is from <span style="font-style:italic">Clostridium acetobutylicum</span>, but only values to be found were for <span style="font-style:italic">Clostridium Kluyveri</span>. This is not a problem however since the species are very close relatives and so the values ought to be close enough for comparison.</p>
+
<p>The enzyme used in the propane pathway, Hbd (3-hydroxybutyryl-CoA dehydrogenase), is from <span style="font-style:italic">Clostridium acetobutylicum</span>, but only values to be found were for <span style="font-style:italic">Clostridium Kluyveri</span>. However, since the species are very close relatives, we can assume the values to be close enough for comparison.</p>
  
<p>The reaction is reversible, but according to<span style="font-style:italic"> Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973)</span>, the specific activity of the 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein and the rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein so we can again approximate the reaction as irreversible.</p>
+
<p>The reaction is reversible, but according to [5], the specific activity of 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein. The rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein. Because of the disparity between these rates we approximate the reaction as irreversible.</p>
  
<p>We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. This is why we can assume that the reaction is either random or ordered Bi Bi -reaction and so the rate equation is as follows.</p>
+
<p>We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. Based on these pieces of information we can assume that the reaction is either random or ordered Bi Bi -reaction so the rate equation is as follows.</p>
 
+
<p style="color:red">This needs some clarification, right now it is quite fast in its conclusions. </p>
+
  
 
<p>\[ \frac{K_{cat}^{Hbd}\cdot [Hbd] \cdot [Acetoacetyl\text{-}CoA]\cdot [NADPH]}{[Acetoacetyl\text{-}CoA]\cdot [NADPH] + K_{M}^{Hbd:NADPH}\cdot [Acetoacetyl\text{-}CoA]+K_{M}^{Hbd:Acetoacetyl\text{-}CoA}\cdot [NADPH]} \]</p>
 
<p>\[ \frac{K_{cat}^{Hbd}\cdot [Hbd] \cdot [Acetoacetyl\text{-}CoA]\cdot [NADPH]}{[Acetoacetyl\text{-}CoA]\cdot [NADPH] + K_{M}^{Hbd:NADPH}\cdot [Acetoacetyl\text{-}CoA]+K_{M}^{Hbd:Acetoacetyl\text{-}CoA}\cdot [NADPH]} \]</p>
Line 212: Line 234:
 
       <td><p>\( K_{cat}^{Hbd} \)</p></td>
 
       <td><p>\( K_{cat}^{Hbd} \)</p></td>
 
       <td><p>336.4 1/min</p></td>
 
       <td><p>336.4 1/min</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Forward reaction, Clostridium Kluyveri</p></td>
 
       <td><p>Forward reaction, Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 218: Line 240:
 
       <td><p>\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>5e-5 mol/l</p></td>
 
       <td><p>5e-5 mol/l</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 224: Line 246:
 
       <td><p>\( K_{M}^{Hbd:NADPH} \)</p></td>
 
       <td><p>\( K_{M}^{Hbd:NADPH} \)</p></td>
 
       <td><p>7e-5 mol/l</p></td>
 
       <td><p>7e-5 mol/l</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 240: Line 262:
 
<p>3-hydroxybutyryl-CoA \(\rightarrow\) Crotonyl-CoA + H\( _2\)O</p>
 
<p>3-hydroxybutyryl-CoA \(\rightarrow\) Crotonyl-CoA + H\( _2\)O</p>
  
<p>Crt is found from <span style="font-style:italic;">Clostridium acetobutylicum</span>. Since there is only one substrate in the reaction, we can form the rate equation by basic Michaelis-Menten. <span style="color:red">We have assumed really reversible reaction as irreversible, because of ...</span></p>
+
<p>Crt (3-hydroxybutyryl-CoA dehydratase) is found from <span style="font-style:italic;">Clostridium acetobutylicum</span>. Since there is only one substrate in the reaction, we can form the rate equation from basic Michaelis-Menten kinetic model. We assumed the reaction to be irreversible since the enzyme is quite efficient.</p>
  
 
<p>\[ \frac{K_{cat}^{Crt}\cdot [Crt]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} +[3\text{-}hydroxybutyryl\text{-}CoA]} \]</p>
 
<p>\[ \frac{K_{cat}^{Crt}\cdot [Crt]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} +[3\text{-}hydroxybutyryl\text{-}CoA]} \]</p>
Line 257: Line 279:
 
       <td><p>\( K_{cat}^{Crt} \)</p></td>
 
       <td><p>\( K_{cat}^{Crt} \)</p></td>
 
       <td><p>1279.8 1/min</p></td>
 
       <td><p>1279.8 1/min</p></td>
       <td><p>Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271</p></td>
+
       <td><p>[6]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 263: Line 285:
 
       <td><p>\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>3e-5 mol/l</p></td>
 
       <td><p>3e-5 mol/l</p></td>
       <td><p>Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271</p></td>
+
       <td><p>[6]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 279: Line 301:
 
<p>Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)</p>
 
<p>Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)</p>
  
<p>Ter is from <span style="font-style:italic;">Treponema denticola</span>. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first (<span style="font-size:13px">source: Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</span>). <span style="color:red">Irreversibility we can justify .....</span></p>
+
<p>Ter (trans-2-enoyl-CoA reductase) is from <span style="font-style:italic;">Treponema denticola</span>. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first [7]. Since we found no references for the reaction to be reversible, we modeled it as irreversible.</p>
  
 
<p>\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]</p>
 
<p>\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]</p>
Line 296: Line 318:
 
       <td><p>\( K_{cat}^{Ter} \)</p></td>
 
       <td><p>\( K_{cat}^{Ter} \)</p></td>
 
       <td><p>5460 1/min</p></td>
 
       <td><p>5460 1/min</p></td>
       <td><p>Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 302: Line 324:
 
       <td><p>\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)</p></td>
 
       <td><p>70 µmol/l</p></td>
 
       <td><p>70 µmol/l</p></td>
       <td><p> Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><p>\( K_{M}^{Ter:NADH} \)</p></td>
 
       <td><p>\( K_{M}^{Ter:NADH} \)</p></td>
 
       <td><p>5.2e-06 mol/l</p></td>
 
       <td><p>5.2e-06 mol/l</p></td>
       <td><p>Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><p>\( K_{I}^{Ter:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{I}^{Ter:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>1.98e-07 mol/l</p></td>
 
       <td><p>1.98e-07 mol/l</p></td>
       <td><p style="color:orange">Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837
+
       <td><p>[7]</p></td>
</p></td>
+
       <td><p></p></td>
       <td><p>Is there something special about this?</p></td>
+
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 331: Line 352:
 
<p>Butyryl-CoA + H\( _2\)O \(\rightarrow\) Butyrate + CoA</p>
 
<p>Butyryl-CoA + H\( _2\)O \(\rightarrow\) Butyrate + CoA</p>
  
<p>YciA is found in <span style="font-style:italic">Haemophilus influenzae</span>. <span style="color:red">Irreversibility assumption because no mention about any other case?</span> We know that there is abundance of water in the cell, so when considering rate equation we can safely assume that it doesn't have much effect to it. This is why we can again use the basic Michaelis-Menten rate equation.</p>
+
<p>YciA (acyl-CoA thioester hydrolase) is found in <span style="font-style:italic">Haemophilus influenzae</span>. When searching for information about this enzyme no references for it being reversible were found. Because of this we modeled it as irreversible. We know that there is abundance of water in the cell, so when considering rate equation we can safely assume that it doesn't have much effect to it. This is why we can again use the basic Michaelis-Menten rate equation.</p>
  
 
<p>\[ \frac{K_{cat}^{YciA}\cdot [YciA]\cdot [Butyryl\text{-}CoA]}{K_{M}^{YciA:Butyryl\text{-}CoA} +[Butyryl\text{-}CoA]} \]</p>
 
<p>\[ \frac{K_{cat}^{YciA}\cdot [YciA]\cdot [Butyryl\text{-}CoA]}{K_{M}^{YciA:Butyryl\text{-}CoA} +[Butyryl\text{-}CoA]} \]</p>
Line 348: Line 369:
 
       <td><p>\( K_{cat}^{YciA} \)</p></td>
 
       <td><p>\( K_{cat}^{YciA} \)</p></td>
 
       <td><p>1320 1/min</p></td>
 
       <td><p>1320 1/min</p></td>
       <td><p>Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796</p></td>
+
       <td><p>[8]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 354: Line 375:
 
       <td><p>\( K_{M}^{YciA:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{YciA:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>3.5e-06 mol/l</p></td>
 
       <td><p>3.5e-06 mol/l</p></td>
       <td><p>Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796</p></td>
+
       <td><p>[8]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 364: Line 385:
  
  
<!-- Car -->
+
<!-- CAR -->
 
<section id="car" data-anchor="car">
 
<section id="car" data-anchor="car">
<h2>Car</h2>
+
<h2>CAR</h2>
  
 
<p>Butyrate + NADPH + ATP \(\rightarrow\) Butyraldehyde + NADP\(^+\) + AMP + 2P\(_i\)</p>
 
<p>Butyrate + NADPH + ATP \(\rightarrow\) Butyraldehyde + NADP\(^+\) + AMP + 2P\(_i\)</p>
  
<p>Car-enzyme is originally from <span style="font-style:italic">Mycobacterium marinum</span>. We assumed that this reaction is irreversible, which is justified because we have ATP in the reactants so we know that the possible reverse reaction can’t be very efficient.
+
<p>CAR-enzyme (carboxylic acid reductase) is originally from <span style="font-style:italic">Mycobacterium marinum</span>. We assumed that this reaction is irreversible, which is justified because we have ATP in the reactants so we know that the possible reverse reaction can’t be very efficient.
For the same reasons as mentioned before, we didn’t consider \(H^+\) in equations. <a href="http://www.pnas.org/content/110/1/87">We know</a> that the reaction can be modeled using Bi Uni Uni Bi Ping Pong mechanism. Then the rate equation becomes</p>
+
For the same reasons as mentioned before, we didn’t consider \(H^+\) in equations. <a href="http://www.pnas.org/content/110/1/87">We know</a> that the reaction can be modeled using Bi Uni Uni Bi Ping Pong mechanism. Thus, the rate equation will be</p>
  
<p>\[\frac{K_{cat}^{Car}\cdot [Car]\cdot [Butyrate]\cdot [NADPH]\cdot [ATP]}{K_{M}^{Car:Butyrate}\cdot K_{M}^{Car:NADPH}\cdot [ATP]+K_{M}^{Car:ATP}\cdot [Butyrate]\cdot [NADPH]+K_{M}^{Car:NADPH}\cdot [Butyrate]\cdot [ATP]}\]\[\cdots \frac{}{+K_{M}^{Car:Butyrate}\cdot [NADPH]\cdot [ATP]+ [Butyrate]\cdot [NADPH]\cdot [ATP]}\]</p>
+
<p>\[\frac{K_{cat}^{CAR}\cdot [CAR]\cdot [Butyrate]\cdot [NADPH]\cdot [ATP]}{K_{M}^{CAR:Butyrate}\cdot K_{M}^{CAR:NADPH}\cdot [ATP]+K_{M}^{CAR:ATP}\cdot [Butyrate]\cdot [NADPH]+K_{M}^{CAR:NADPH}\cdot [Butyrate]\cdot [ATP]}\]\[\cdots \frac{}{+K_{M}^{CAR:Butyrate}\cdot [NADPH]\cdot [ATP]+ [Butyrate]\cdot [NADPH]\cdot [ATP]}\]</p>
  
 
<table class="table table-bordered">
 
<table class="table table-bordered">
Line 386: Line 407:
 
   <tbody>
 
   <tbody>
 
     <tr>
 
     <tr>
       <td><p>\( K_{cat}^{Car} \)</p></td>
+
       <td><p>\( K_{cat}^{CAR} \)</p></td>
 
       <td><p>150 1/min</p></td>
 
       <td><p>150 1/min</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p>Forward reaction, calculated from a plot</p></td>
 
       <td><p>Forward reaction, calculated from a plot</p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><p>\( K_{M}^{Car:Butyrate} \)</p></td>
+
       <td><p>\( K_{M}^{CAR:Butyrate} \)</p></td>
 
       <td><p>0.013 mol/l</p></td>
 
       <td><p>0.013 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p>Calculated from a plot</p></td>
 
       <td><p>Calculated from a plot</p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><p>\( K_{M}^{Car:NADPH} \)</p></td>
+
       <td><p>\( K_{M}^{CAR:NADPH} \)</p></td>
 
       <td><p>4.8e-05 mol/l</p></td>
 
       <td><p>4.8e-05 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><p>\( K_{M}^{Car:ATP} \)</p></td>
+
       <td><p>\( K_{M}^{CAR:ATP} \)</p></td>
 
       <td><p>0.000115 mol/l</p></td>
 
       <td><p>0.000115 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 413: Line 434:
  
 
</section>
 
</section>
<!-- Car ends -->
+
<!-- CAR ends -->
  
  
Line 419: Line 440:
 
<section id="sfp" data-anchor="sfp">
 
<section id="sfp" data-anchor="sfp">
 
<h2>Sfp</h2>
 
<h2>Sfp</h2>
<p>Sfp does not directly process the substrates in our pathway, but instead acts as an activating enzyme for Car. We have modeled the reactions concerning Sfp <a href="https://2015.igem.org/Team:Aalto-Helsinki/Car-activation">here</a>.</p>
+
<p>Sfp (4'-phosphopantetheinyl transferase) does not directly affect to the intermediates in our pathway, but instead acts as an activating enzyme for CAR. We have modeled the reactions concerning Sfp <a href="https://2015.igem.org/Team:Aalto-Helsinki/Car-activation">here</a>.</p>
  
 
</section>
 
</section>
Line 425: Line 446:
  
  
<!-- Ado -->
+
<!-- ADO -->
 
<section id="ado" data-anchor="ado">
 
<section id="ado" data-anchor="ado">
<h2>Ado</h2>
+
<h2>ADO</h2>
 +
 
 +
 
 +
<p>Aldehyde deformylating oxygenase is the final enzyme in the propane pathway, turning butyraldehyde into propane. We are using an ADO mutant (A134F) that <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159587/">has an increased activity</a> towards short-chained aldehydes, such as butyraldehyde. Furthermore, we are enhancing the electron supply to ADO by overexpressing <a href="http://www.biotechnologyforbiofuels.com/content/8/1/61">its presumed</a> natural electron acceptor/donor ferredoxin. To reduce ferredoxin under aerobic conditions, we co-express NADPH/ferredoxin/flavodoxin-oxidoreductase (Fpr).</p>
 +
 
 +
<p>Using an A134F mutant and a ferredoxin reducing system including Fpr <a href="http://www.nature.com/ncomms/2014/140902/ncomms5731/full/ncomms5731.html">improves propane production</a>. Combining all these improvements is challenging from the modeling point of view, as there are no kinetic parameters available for the reaction where both the ADO A134F mutant and a ferredoxin reducing system are used. As no sufficient data is available, we cannot model the  ADO reaction like we have modeled the other reactions in the propane pathway.</p>
 +
 
 +
<p><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159587/">We know</a> that the wild-type ADO together with PMS/NADH reducing system has kcat  value 0.0031±0.0001 min−1 and Km value 10.1±0.9 mM for the reaction from butyraldehyde to propane. A134F mutant <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159587/">has been shown</a> to be more efficient than wild-type ADO and ferredoxin reducing system <a href="http://www.biotechnologyforbiofuels.com/content/6/1/86">more efficient</a> for ADO than a PMS/NADH reducing system. Therefore we can rather safely assume 10.1±0.9 mM to be the maximum Km possible and 0.0031±0.0001 min−1 to be the minimum kcat possible for estimating ADO reaction kinetics in our system.</p>
 +
 
 +
<p>Since we could not model the reactions that govern ADO's function, we approximated these reactions by simplifying the enzyme kinetics that govern ADO to the simplest case of Miclaelis-Menten kinetics. While this is not ideal, with current data and within these time limitations we can't make better assumptions.</p>
  
<p>\[ \frac{K_{cat}^{Ado}\cdot [Ado]\cdot [Butyrate]}{K_{M}^{Ado:Butyrate} +[Butyrate]} \]</p>
+
<p>\[ \frac{K_{cat}^{ADO}\cdot [ADO]\cdot [Butyrate]}{K_{M}^{ADO:Butyrate} +[Butyrate]} \]</p>
  
 
<table class="table table-bordered">
 
<table class="table table-bordered">
Line 442: Line 472:
 
   <tbody>
 
   <tbody>
 
     <tr>
 
     <tr>
       <td><p>\( K_{cat}^{Ado} \)</p></td>
+
       <td><p>\( K_{cat}^{ADO} \)</p></td>
 
       <td><p>0.03 1/min</p></td>
 
       <td><p>0.03 1/min</p></td>
       <td><p style="color:red">Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)</p></td>
+
       <td><p>[10]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><p>\( K_{M}^{Ado:Butyraldehyde} \)</p></td>
+
       <td><p>\( K_{M}^{ADO:Butyraldehyde} \)</p></td>
 
       <td><p>0.0101 mol/l</p></td>
 
       <td><p>0.0101 mol/l</p></td>
       <td><p style="color:red">Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)</p></td>
+
       <td><p>[10]</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
Line 457: Line 487:
  
 
</section>
 
</section>
<!-- Ado ends -->
+
<!-- ADO ends -->
  
  
Line 464: Line 494:
 
<h2>Other Constants</h2>
 
<h2>Other Constants</h2>
  
<p>This is a table of typical concentrations in a cell that we use in our model.</p>
+
<p>The following table provides information about typical concentrations in a cell that we use in our model.</p>
  
 
<table class="table table-bordered">
 
<table class="table table-bordered">
Line 479: Line 509:
 
       <td><p>[Acetyl-CoA]</p></td>
 
       <td><p>[Acetyl-CoA]</p></td>
 
       <td><p>0.00061 mol/l</p></td>
 
       <td><p>0.00061 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 485: Line 515:
 
       <td><p>[Acetoacetyl-CoA]</p></td>
 
       <td><p>[Acetoacetyl-CoA]</p></td>
 
       <td><p>2.2e-05 mol/l</p></td>
 
       <td><p>2.2e-05 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 491: Line 521:
 
       <td><p>[CoA]</p></td>
 
       <td><p>[CoA]</p></td>
 
       <td><p>0.00014 mol/l</p></td>
 
       <td><p>0.00014 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 497: Line 527:
 
       <td><p>[NADPH]</p></td>
 
       <td><p>[NADPH]</p></td>
 
       <td><p>0.00012 mol/l</p></td>
 
       <td><p>0.00012 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 503: Line 533:
 
       <td><p>[NADP\( ^+\)]</p></td>
 
       <td><p>[NADP\( ^+\)]</p></td>
 
       <td><p>2.1e-06 mol/l</p></td>
 
       <td><p>2.1e-06 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 509: Line 539:
 
       <td><p>[NADH]</p></td>
 
       <td><p>[NADH]</p></td>
 
       <td><p>8.3e-05 mol/l</p></td>
 
       <td><p>8.3e-05 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 515: Line 545:
 
       <td><p>[NAD\( ^+\)]</p></td>
 
       <td><p>[NAD\( ^+\)]</p></td>
 
       <td><p>0.0026 mol/l</p></td>
 
       <td><p>0.0026 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 521: Line 551:
 
       <td><p>[ATP]</p></td>
 
       <td><p>[ATP]</p></td>
 
       <td><p>0.0096 mol/l</p></td>
 
       <td><p>0.0096 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 527: Line 557:
 
       <td><p>[AMP]</p></td>
 
       <td><p>[AMP]</p></td>
 
       <td><p>0.00028 mol/l</p></td>
 
       <td><p>0.00028 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 533: Line 563:
 
       <td><p>[H\( _2\)O]</p></td>
 
       <td><p>[H\( _2\)O]</p></td>
 
       <td><p>38.85 mol/l</p></td>
 
       <td><p>38.85 mol/l</p></td>
       <td><p>Concentration of water in water is \(\frac{\frac{m}{V}}{M}\). E.coli is about 70% water. Thus, the water concentration in E.coli is \( 70\%  \cdot \frac{1000 \frac{g}{l}}{18.01 g/mol} = 38.85 \frac{mol}{l} \)</p></td>
+
       <td><p>Concentration of water in water is \(\frac{\frac{m}{V}}{M}\). <i>E.coli</i> is about 70% water. Thus, the water concentration in <i>E.coli</i> is \( 70\%  \cdot \frac{1000 \frac{g}{l}}{18.01 g/mol} = 38.85 \frac{mol}{l} \)</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>
 
</table>
 
</table>
 
 
</section>
 
</section>
 
<!-- Other constants end -->
 
<!-- Other constants end -->
  
</div><!-- end inner-container-->
 
  
  
</div></div></div></body> <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
+
<!-- Sources -->
 +
<section id="sources" data-anchor="sources">
 +
<h2>Sources</h2>
  
 +
<p><b>[1]</b> Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)</p>
 +
<p><b>[2]</b> Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of <i>Escherichia coli</i>; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170 </p>
 +
<p><b>[3]</b> Thiolases of <i>Escherichia coli</i>: purification and chain length specificities
 +
Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411 </p>
 +
<p><b>[4]</b> Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982 </p>
 +
<p><b>[5]</b> Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973) </p>
 +
<p><b>[6]</b> Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271 </p>
 +
<p><b>[7]</b> Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837 </p>
 +
<p><b>[8]</b> Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796 </p>
 +
<p><b>[9]</b> Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92 </p>
 +
<p><b>[10]</b> Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013) </p>
 +
<p><b>[11]</b> Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009 </p>
  
  
<!-- here scripts to make the site navigation beautiful and responsive. -->
+
</section>
<script>
+
<!-- Sources end -->
  
$('#sidenav a').on('click', function() {
 
  
    var scrollAnchor = $(this).attr('data-scroll'),
+
<p style="margin-bottom:0;padding-bottom:10%;"></p>
        scrollPoint = $('section[data-anchor="' + scrollAnchor + '"]').offset().top - 28;
+
  
    $('body,html').animate({
+
</div><!-- end inner-container-->
        scrollTop: scrollPoint
+
</div><!-- ends background -->
    }, 500);
+
  
    return false;
+
</div></div></div></body> <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
 
+
<p style="margin-bottom:0;">
})
+
 
+
 
+
$(window).scroll(function() {
+
    var windscroll = $(window).scrollTop();
+
    if (windscroll >= 100) {
+
        $('.inner-container section').each(function(i) {
+
            if ($(this).position().top <= windscroll + 20) {
+
                $('#sidenav a.active').removeClass('active');
+
                $('#sidenav a').eq(i).addClass('active');
+
            }
+
        });
+
 
+
    } else {
+
 
+
        $('#sidenav a.active').removeClass('active');
+
        $('#sidenav a:first').addClass('active');
+
    }
+
 
+
}).scroll();
+
  
</script>
 
  
  
</html>
+
<!-- Scirpt for beautiful scrolling inside the page: smooth transitions and we show in what section the reader is. -->
 +
<script src="https://2015.igem.org/Team:Aalto-Helsinki/ResponsiveNavScript?action=raw&ctype=text/javascript"></script>

Latest revision as of 04:25, 29 October 2015

Kinetics

We modeled our enzyme reactions in the propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in metabolical modeling of enzymes. Michaelis-Menten kinetics assumes that the reaction an enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration and \( V_{max} \) tells us the maximum speed of the enzyme. \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration. \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes the substrate to a product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example [1].

Figure 1: Propane pathway.

We understand and accept the fact that the kinetic data we have used in our model is very rough, due to varying measurement conditions and the fact that the measurements have been done in vitro, whereas our system functions in vivo. However, we believe our model can give us more reliable information about the bottlenecks of the pathway than mere educated guesses.

AtoB

2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA

AtoB (acetyl-CoA C-acetyltransferase) is native to Escherichia Coli. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one (Vf/Vr: 22.3, Source: [2]) we can approximate is as irreversible.

Based on this article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:

\[ \frac{K_{cat}^{AtoB} \cdot [AtoB] \cdot [Acetyl\text{-}CoA]^2}{[Acetyl\text{-}CoA]^2+2\cdot K_{M}^{AtoB:Acetyl\text{-}CoA}\cdot [Acetyl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{AtoB} \)

10653 1/min

[3]

Forward reaction

\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)

0.00047 mol/l

[2]

FadB2

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

FadB2 (3-hydroxybutyryl-CoA dehydrogenase) is found from Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv). The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.

The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See [1] for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because it needs to be fairly constant in the cell or otherwise the cell will die off. This yields us the following as our reaction rate equation.

\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}} {\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:NADPH}\cdot [Acetoacetyl\text{-}CoA]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{ K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADP^+]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+} \] \[ \cdots \frac{}{+\frac{K_{M}^{FadB2:NADP^+}\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+\frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{[NADP^+]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}}\]

Constant

Value

Source

To note

\( K_{cat1}^{FadB2} \)

0.677 1/min

[4]

Forward reaction

\( K_{cat2}^{FadB2} \)

0.723 1/min

[4]

Reverse reaction

\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)

65.6 mmol/l

[4]

Forward reaction

\( K_{M}^{FadB2:NADPH} \)

50 mmol/l

[4]

Forward reaction

\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)

43.5 mmol/l

[4]

Reverse reaction

\( K_{M}^{FadB2:NADP^+} \)

29.5 mmol/l

[4]

Reverse reaction

Hbd

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

The enzyme used in the propane pathway, Hbd (3-hydroxybutyryl-CoA dehydrogenase), is from Clostridium acetobutylicum, but only values to be found were for Clostridium Kluyveri. However, since the species are very close relatives, we can assume the values to be close enough for comparison.

The reaction is reversible, but according to [5], the specific activity of 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein. The rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein. Because of the disparity between these rates we approximate the reaction as irreversible.

We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. Based on these pieces of information we can assume that the reaction is either random or ordered Bi Bi -reaction so the rate equation is as follows.

\[ \frac{K_{cat}^{Hbd}\cdot [Hbd] \cdot [Acetoacetyl\text{-}CoA]\cdot [NADPH]}{[Acetoacetyl\text{-}CoA]\cdot [NADPH] + K_{M}^{Hbd:NADPH}\cdot [Acetoacetyl\text{-}CoA]+K_{M}^{Hbd:Acetoacetyl\text{-}CoA}\cdot [NADPH]} \]

Constant

Value

Source

To note

\( K_{cat}^{Hbd} \)

336.4 1/min

[5]

Forward reaction, Clostridium Kluyveri

\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)

5e-5 mol/l

[5]

Clostridium Kluyveri

\( K_{M}^{Hbd:NADPH} \)

7e-5 mol/l

[5]

Clostridium Kluyveri

Crt

3-hydroxybutyryl-CoA \(\rightarrow\) Crotonyl-CoA + H\( _2\)O

Crt (3-hydroxybutyryl-CoA dehydratase) is found from Clostridium acetobutylicum. Since there is only one substrate in the reaction, we can form the rate equation from basic Michaelis-Menten kinetic model. We assumed the reaction to be irreversible since the enzyme is quite efficient.

\[ \frac{K_{cat}^{Crt}\cdot [Crt]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} +[3\text{-}hydroxybutyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{Crt} \)

1279.8 1/min

[6]

Forward reaction

\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)

3e-5 mol/l

[6]

Ter

Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)

Ter (trans-2-enoyl-CoA reductase) is from Treponema denticola. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first [7]. Since we found no references for the reaction to be reversible, we modeled it as irreversible.

\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]

Constant

Value

Source

To note

\( K_{cat}^{Ter} \)

5460 1/min

[7]

Forward reaction

\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)

70 µmol/l

[7]

\( K_{M}^{Ter:NADH} \)

5.2e-06 mol/l

[7]

\( K_{I}^{Ter:Butyryl\text{-}CoA} \)

1.98e-07 mol/l

[7]

YciA

Butyryl-CoA + H\( _2\)O \(\rightarrow\) Butyrate + CoA

YciA (acyl-CoA thioester hydrolase) is found in Haemophilus influenzae. When searching for information about this enzyme no references for it being reversible were found. Because of this we modeled it as irreversible. We know that there is abundance of water in the cell, so when considering rate equation we can safely assume that it doesn't have much effect to it. This is why we can again use the basic Michaelis-Menten rate equation.

\[ \frac{K_{cat}^{YciA}\cdot [YciA]\cdot [Butyryl\text{-}CoA]}{K_{M}^{YciA:Butyryl\text{-}CoA} +[Butyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{YciA} \)

1320 1/min

[8]

Forward reaction

\( K_{M}^{YciA:Butyryl\text{-}CoA} \)

3.5e-06 mol/l

[8]

CAR

Butyrate + NADPH + ATP \(\rightarrow\) Butyraldehyde + NADP\(^+\) + AMP + 2P\(_i\)

CAR-enzyme (carboxylic acid reductase) is originally from Mycobacterium marinum. We assumed that this reaction is irreversible, which is justified because we have ATP in the reactants so we know that the possible reverse reaction can’t be very efficient. For the same reasons as mentioned before, we didn’t consider \(H^+\) in equations. We know that the reaction can be modeled using Bi Uni Uni Bi Ping Pong mechanism. Thus, the rate equation will be

\[\frac{K_{cat}^{CAR}\cdot [CAR]\cdot [Butyrate]\cdot [NADPH]\cdot [ATP]}{K_{M}^{CAR:Butyrate}\cdot K_{M}^{CAR:NADPH}\cdot [ATP]+K_{M}^{CAR:ATP}\cdot [Butyrate]\cdot [NADPH]+K_{M}^{CAR:NADPH}\cdot [Butyrate]\cdot [ATP]}\]\[\cdots \frac{}{+K_{M}^{CAR:Butyrate}\cdot [NADPH]\cdot [ATP]+ [Butyrate]\cdot [NADPH]\cdot [ATP]}\]

Constant

Value

Source

To note

\( K_{cat}^{CAR} \)

150 1/min

[9]

Forward reaction, calculated from a plot

\( K_{M}^{CAR:Butyrate} \)

0.013 mol/l

[9]

Calculated from a plot

\( K_{M}^{CAR:NADPH} \)

4.8e-05 mol/l

[9]

\( K_{M}^{CAR:ATP} \)

0.000115 mol/l

[9]

Sfp

Sfp (4'-phosphopantetheinyl transferase) does not directly affect to the intermediates in our pathway, but instead acts as an activating enzyme for CAR. We have modeled the reactions concerning Sfp here.

ADO

Aldehyde deformylating oxygenase is the final enzyme in the propane pathway, turning butyraldehyde into propane. We are using an ADO mutant (A134F) that has an increased activity towards short-chained aldehydes, such as butyraldehyde. Furthermore, we are enhancing the electron supply to ADO by overexpressing its presumed natural electron acceptor/donor ferredoxin. To reduce ferredoxin under aerobic conditions, we co-express NADPH/ferredoxin/flavodoxin-oxidoreductase (Fpr).

Using an A134F mutant and a ferredoxin reducing system including Fpr improves propane production. Combining all these improvements is challenging from the modeling point of view, as there are no kinetic parameters available for the reaction where both the ADO A134F mutant and a ferredoxin reducing system are used. As no sufficient data is available, we cannot model the ADO reaction like we have modeled the other reactions in the propane pathway.

We know that the wild-type ADO together with PMS/NADH reducing system has kcat value 0.0031±0.0001 min−1 and Km value 10.1±0.9 mM for the reaction from butyraldehyde to propane. A134F mutant has been shown to be more efficient than wild-type ADO and ferredoxin reducing system more efficient for ADO than a PMS/NADH reducing system. Therefore we can rather safely assume 10.1±0.9 mM to be the maximum Km possible and 0.0031±0.0001 min−1 to be the minimum kcat possible for estimating ADO reaction kinetics in our system.

Since we could not model the reactions that govern ADO's function, we approximated these reactions by simplifying the enzyme kinetics that govern ADO to the simplest case of Miclaelis-Menten kinetics. While this is not ideal, with current data and within these time limitations we can't make better assumptions.

\[ \frac{K_{cat}^{ADO}\cdot [ADO]\cdot [Butyrate]}{K_{M}^{ADO:Butyrate} +[Butyrate]} \]

Constant

Value

Source

To note

\( K_{cat}^{ADO} \)

0.03 1/min

[10]

Forward reaction

\( K_{M}^{ADO:Butyraldehyde} \)

0.0101 mol/l

[10]

Other Constants

The following table provides information about typical concentrations in a cell that we use in our model.

Constant

Value

Source

To note

[Acetyl-CoA]

0.00061 mol/l

[11]

glucose-fed, exponentially growing E. coli

[Acetoacetyl-CoA]

2.2e-05 mol/l

[11]

glucose-fed, exponentially growing E. coli

[CoA]

0.00014 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADPH]

0.00012 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADP\( ^+\)]

2.1e-06 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADH]

8.3e-05 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NAD\( ^+\)]

0.0026 mol/l

[11]

glucose-fed, exponentially growing E. coli

[ATP]

0.0096 mol/l

[11]

glucose-fed, exponentially growing E. coli

[AMP]

0.00028 mol/l

[11]

glucose-fed, exponentially growing E. coli

[H\( _2\)O]

38.85 mol/l

Concentration of water in water is \(\frac{\frac{m}{V}}{M}\). E.coli is about 70% water. Thus, the water concentration in E.coli is \( 70\% \cdot \frac{1000 \frac{g}{l}}{18.01 g/mol} = 38.85 \frac{mol}{l} \)

Sources

[1] Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)

[2] Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170

[3] Thiolases of Escherichia coli: purification and chain length specificities Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411

[4] Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982

[5] Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973)

[6] Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271

[7] Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837

[8] Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796

[9] Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92

[10] Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)

[11] Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009