Difference between revisions of "Team:KU Leuven/InterLabStudy/Protocol"
Laetitia VW (Talk | contribs) |
|||
(59 intermediate revisions by 8 users not shown) | |||
Line 34: | Line 34: | ||
background-color: transparent; | background-color: transparent; | ||
} | } | ||
+ | |||
+ | .summaryimg{ | ||
+ | opacity:0.8; | ||
+ | } | ||
</style> | </style> | ||
Line 48: | Line 52: | ||
<div class="summaryheader"> | <div class="summaryheader"> | ||
<div class="summaryimg"> | <div class="summaryimg"> | ||
− | <img src="https://static.igem.org/mediawiki/2015/ | + | <img src="https://static.igem.org/mediawiki/2015/c/c0/KU_Leuven_Banner_Rood5.jpg" |
width="100%"> | width="100%"> | ||
<div class="head"> | <div class="head"> | ||
<h2> | <h2> | ||
− | + | Protocols | |
</h2> | </h2> | ||
</div> | </div> | ||
Line 67: | Line 71: | ||
</h2> | </h2> | ||
<p> | <p> | ||
− | + | Experiments started with the construction of devices that contained constitutive | |
promoters with low (J23117), medium (J23106) and higher (J23101) strength. | promoters with low (J23117), medium (J23106) and higher (J23101) strength. | ||
− | Each | + | Each promoter was coupled to BioBrick I13504, containing a RBS, GFP protein and a double terminator. |
− | + | The above mentioned BioBrick and the promoters were transformed in <i>E. cloni</i> competent cells. The cells were grown on LB (Sigma-Aldrich) 1.5% agar (VWR Chemicals) plates with chloramphenicol (from Acros Organics) as a selection | |
− | + | marker. As a positive control, cells were also transformed with the pUC19 plasmid and | |
− | marker. As a positive control, | + | plated on LB plates containing ampicillin. <i>E. cloni</i> without any |
− | plated | + | plasmid was also plated as a negative control on LB plates containing chloramphenicol. |
− | plasmid as a negative control on LB plates containing chloramphenicol. | + | Transformation of the BioBricks was performed twice by using chemically competent |
− | + | cells. The first time, no colonies from any of the four BioBricks were obtained. The | |
− | cells. The first time, | + | second time, only a few colonies grew. Nevertheless, the positive controls were |
− | second time | + | correct every time and the transformation efficiency of our <i>E. cloni</i> was previously proven to be very high. Therefore, we switched to electroporation. This technique showed a higher efficiency and enough |
− | correct every time | + | colonies grew to perform the measurements. |
− | + | ||
− | + | ||
− | + | ||
− | colonies | + | |
<br></br> | <br></br> | ||
− | Thereafter | + | Thereafter, the BioBrick Assembly Method was used to combine the promoters with GFP. |
− | Subsequently | + | Subsequently, electrocompetent <i>E. cloni</i> cells were transformed, |
− | plated | + | plated on LB agar plates with antibiotic selection markers, illuminated with blue/UV-light to check for the presence of GFP, and thus |
− | + | a functional device. | |
− | + | ||
</br> | </br> | ||
− | For the fluorescent measurements, | + | For the fluorescent measurements, liquid cultures (3 mL-LB + Antibiotic) were inoculated in polypropylene round-bottom tubes and incubated for 16 |
− | + | to 18 hours in a shaking incubator (200 rpm) at 37 °C. The | |
− | to 18 hours in a shaking incubator (200 rpm) at 37 | + | fluorescence data from cells grown to an OD of ~0.5 (if the OD was higher, it was brought |
− | + | in the range 0.48-0.52) were measured at 300 nm. Finally, the fluorescence data were collected | |
− | in the range 0.48-0.52) at 300 nm. Finally, the fluorescence data were collected | + | from the overnight cultures of the constructed devices with excitation and |
− | from the overnight cultures of the constructed devices with | + | emission wavelengths of 483 nm and 525 nm respectively in a 96-well plate by a |
− | emission wavelengths of 483 nm and 525 nm respectively | + | Tecan Safire2 monochromator MTP Reader. Besides, the absorbance measurements at 600 |
− | Tecan Safire2 monochromator MTP Reader. | + | nm were repeated in the plate reader to normalize for cell density. |
− | nm were repeated in the plate reader | + | |
− | + | ||
</br> | </br> | ||
</p> | </p> | ||
</div> | </div> | ||
+ | <div class="part"> | ||
<h2> | <h2> | ||
Methodology</h2> | Methodology</h2> | ||
− | </ | + | </div> |
<div class="center"> | <div class="center"> | ||
<div class="togglebar"> | <div class="togglebar"> | ||
Line 116: | Line 114: | ||
</div> | </div> | ||
<div id="toggleone"> | <div id="toggleone"> | ||
− | < | + | <dl> |
− | + | <dd>- Make a liquid culture of a single colony in 1-3 mL salt free LB</dd> | |
− | Grow 300-400 mL cells (without salt) | + | <dd>- Grow 300-400 mL cells (without salt) at 37 °C until the O.D. reaches 0.6</dd> |
− | + | <dd>- Cool down on ice and perform all the steps at 4 °C</dd> | |
− | Spin the cells down in falcon tubes (3500 g, 20 min, | + | <dd>- Spin the cells down in falcon tubes (3500 g, 20 min, 4 °C)</dd> |
− | Resuspend the cells in 10 % glycerol, spin the cells down (5000 g, 10 min, 4 | + | <dd>- Resuspend the cells in 10% glycerol, spin the cells down (5000 g, 10 min, 4 °C). Repeat this step 3 times</dd> |
− | °C). Repeat this step 3 times</ | + | <dd>- Resuspend the cells in 10% glycerol to obtain a dense pulp (usually not more |
− | Resuspend the cells in 10 % glycerol to obtain a dense pulp (usually not more | + | than 1.5 mL)</dd> |
− | than 1.5 mL)</ | + | <dd>- Take 50 µL sample and do the electroporation test (without DNA). Pulses should be |
− | Take 50 µL sample and do the electroporation test (without DNA). | + | between 4 and 6 msec. If shorter, wash the cells once again with 30 mL |
− | + | glycerol</dd> | |
− | glycerol</ | + | <dd>- Aliquot the cells (50 µL), quick-freeze in liquid nitrogen and store at -80 °C</dd> |
− | Aliquot the cells (50 µL) | + | </dl> |
− | °C</ | + | |
</div> | </div> | ||
</div> | </div> | ||
Line 139: | Line 136: | ||
</div> | </div> | ||
<div id="toggletwo" > | <div id="toggletwo" > | ||
− | < | + | <dl> |
− | Electroporate (Eppendorf, 1700 V, 4 msec)</ | + | <dd>- Add 1 µl DNA to 50 µl electrocompetent cells in an ice-cold cuvette (1 mm)</dd> |
− | Add 950 µl of SOC solution</ | + | <dd>- Electroporate (Eppendorf, 1700 V, 4 msec)</dd> |
− | Incubate for one hour at 37 °C</ | + | <dd>- Add 950 µl of SOC solution</dd> |
− | Plate | + | <dd>- Incubate for one hour at 37 °C</dd> |
− | J23101, J23106 and J23117 | + | <dd>- Plate out on pre-warmed plates containing the correct selective medium, in this case chlormaphenicol for J23101, J23106 and J23117 and ampicillin for I13504 (37 °C)</dd> |
− | + | </dl> | |
</div> | </div> | ||
</div> | </div> | ||
Line 151: | Line 148: | ||
<div class="togglebar"> | <div class="togglebar"> | ||
<div class="togglethree"> | <div class="togglethree"> | ||
− | <h2> | + | <h2>BioBrick Assembly Method</h2> |
</div> | </div> | ||
<div id="togglethree" > | <div id="togglethree" > | ||
− | < | + | <dl> |
− | Digest the promoters J23101, J23106 and J23117 with PstI in buffer O</ | + | <dd>- Digest I13504 (GFP) with XbaI and PstI in Tango buffer</dd> |
− | Load the digested I13504 on a 1.5% agarose gel and | + | <dd>- Digest the promoters J23101, J23106 and J23117 with PstI in buffer O</dd> |
− | Thereafter perform a gel purification of I13504 (GeneJET Gel Extraction Kit - | + | <dd>- Load the digested I13504 on a 1.5% agarose gel and visualize it under UV light.</dd> |
− | ThermoFisher Scientific)</ | + | <dd>- Thereafter, perform a gel purification of I13504 (GeneJET Gel Extraction Kit - |
− | PCR purify the promoters J23101, J23106 and J23117</ | + | - ThermoFisher Scientific)</dd> |
− | Digest the promoters J23101, J23106 and J23117 with FD SpeI in 10x Fast Digest | + | <dd>- PCR purify the promoters J23101, J23106 and J23117</dd> |
− | Buffer</ | + | <dd>- Digest the promoters J23101, J23106 and J23117 with FD SpeI in 10x Fast Digest |
− | Ligate every promoter with I13504 using T4 DNA ligase</ | + | Buffer</dd> |
+ | <dd>- Ligate every promoter with I13504 using T4 DNA ligase</dd> | ||
+ | </dl> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 169: | Line 168: | ||
<div class="togglebar"> | <div class="togglebar"> | ||
<div class="togglefour"> | <div class="togglefour"> | ||
− | <h2>Restriction | + | <h2>Restriction Mapping</h2> |
</div> | </div> | ||
<div id="togglefour"> | <div id="togglefour"> | ||
− | < | + | <dl> |
− | Mix gently and spin down</ | + | <dd>- Digest with NcoI (cuts 1x in pSB1C3) and XhoI (cuts 1x in GFP) in Tango buffer</dd> |
− | + | <dd>- Mix gently and spin down</dd> | |
− | + | <dd>- Incubate for 2 hours at 37 °C in a heating block</dd> | |
− | + | <dd>- Separate the fragments using gel electrophoresis on a 1.5% agarose gel</dd> | |
+ | </dl> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 187: | Line 187: | ||
</h2> | </h2> | ||
<p> | <p> | ||
− | Our wetlab team worked well together to fulfill this challenge. Vincent Van Deuren and Laurens | + | Our wetlab team worked well together to fulfill this challenge. Vincent Van Deuren and Laurens Vandebroek performed the BioBrick assembly and the transformation experiments. The measurements were recorded by Laetitia Van Wonterghem, Ovia Margaret Thirukkumaran and Laurens Vandebroek. Laura Van Hese, Astrid Deryckere, Ines Cottignie and Vincent Van Deuren carried out the restriction digestion to check for the inserts. Finally, the results were processed by Ovia Margaret Thirukkumaran and Laurens Vandebroek and our wiki-page was filled with provided data by Vincent Van Deuren and Laetitia Van Wonterghem. Our supervisor Katarzyna Malczewska coordinated the overall works and the rest of the team members served with a helping hand whenever needed.</br> |
− | <br> To grow our cells, we made use of a New Brunswick Innova® 43/43R Shaker purchased | + | <br> To grow our cells, we made use of a New Brunswick Innova® 43/43R Shaker purchased from Eppendorf. This incubator has a throw of 2.54 cm. Our devices were measured by a Tecan Safire2 monochromator MTP Reader. This machine was last calibrated on the 31<sup>th</sup> of March in 2015 by Tecan and our measurements took place on the 25<sup>th</sup> of August in 2015. The cells were excited at 483 nm and the emission was recorded at 525 nm. To capture the light emission, a Quad4 Monochromator was used. The absorbance was measured at 600 nm with a sampling frequency of 0.11 seconds/ sample while the sampling frequency of the fluorescence was 0.15 seconds/sample. |
</br> | </br> | ||
Line 197: | Line 197: | ||
</div> | </div> | ||
<!--Foot don't touch!--> | <!--Foot don't touch!--> | ||
+ | |||
+ | <div class="whiterow"></div> | ||
<div class="subsections"> | <div class="subsections"> | ||
<div class="subsectionwrapper"> | <div class="subsectionwrapper"> | ||
<div class="subimgrow"> | <div class="subimgrow"> | ||
− | + | <div class="whitespaceside"></div> | |
<div class="subimg"> | <div class="subimg"> | ||
− | <a href="https://2015.igem.org/Team:KU_Leuven/ | + | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> |
− | <img src="https://static.igem.org/mediawiki/2015/ | + | <img src="https://static.igem.org/mediawiki/2015/e/e0/KU_Leuven_Wiki_Button_-_Results2.png" width="100%"> |
</a> | </a> | ||
</div> | </div> | ||
Line 212: | Line 214: | ||
<div class="subimg"> | <div class="subimg"> | ||
− | <img src="https://static.igem.org/mediawiki/2015/ | + | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> |
+ | <img src="https://static.igem.org/mediawiki/2015/c/cb/KUL_Wiki_Button_-_Back.png" width="100%"> | ||
+ | </a> | ||
</div> | </div> | ||
− | + | <div class="whitespaceside"></div> | |
− | + | ||
</div> | </div> | ||
<div class="subtextrow"> | <div class="subtextrow"> | ||
+ | <div class="whitespaceside"></div> | ||
<div class="subtext"> | <div class="subtext"> | ||
<a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> | ||
<h2>Results</h2> | <h2>Results</h2> | ||
− | + | <p>Click here to discover our results.</p> | |
− | + | ||
− | </p> | + | |
</a> | </a> | ||
</div> | </div> | ||
Line 234: | Line 236: | ||
<a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> | ||
<h2>Back</h2> | <h2>Back</h2> | ||
− | <p>Go back to | + | <p>Go back to the Interlab page.</p> |
− | </p> | + | </a> |
− | </ | + | </div> |
+ | <div class="whitespaceside"></div> | ||
+ | </div> | ||
+ | |||
+ | <div class="subimgreadmore"> | ||
+ | <div class="whitespaceside"></div> | ||
+ | <div class="subimgrm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> | ||
+ | <div id="more"> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more"> | ||
+ | </div> | ||
+ | </a> | ||
+ | </div> | ||
+ | |||
+ | <div class="whitespace"></div> | ||
+ | |||
+ | <div class="subimgrm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> | ||
+ | <div id="back"> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more"> | ||
+ | </div> | ||
+ | </a> | ||
+ | </div> | ||
+ | <div class="whitespaceside"></div> | ||
+ | </div> | ||
+ | |||
+ | <div class="subimgrowm"> | ||
+ | <div class="subimgm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> | ||
+ | <b>Results</b> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/e/e0/KU_Leuven_Wiki_Button_-_Results2.png" width="100%"> | ||
</a> | </a> | ||
</div> | </div> | ||
Line 243: | Line 275: | ||
</div> | </div> | ||
+ | <div class="subtextm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy/Results"> | ||
+ | <p>Click here to discover our results.<br/></p> | ||
+ | </a> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="subimgrowm"> | ||
+ | <div class="whiterow"> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="subimgrowm"> | ||
+ | <div class="subimgm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> | ||
+ | <b>Back</b> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/c/cb/KUL_Wiki_Button_-_Back.png" width="100%" > | ||
+ | </a> | ||
+ | </div> | ||
+ | |||
+ | <div class="whitespace"></div> | ||
+ | |||
+ | <div class="subtextm"> | ||
+ | <a href="https://2015.igem.org/Team:KU_Leuven/InterLabStudy"> | ||
+ | <p>Go back to the Interlab page.<br/></p> | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
Line 255: | Line 314: | ||
<p style="font-size:1.3em; text-align: center"> | <p style="font-size:1.3em; text-align: center"> | ||
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee<br> | Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee<br> | ||
− | Telephone | + | Telephone: +32(0)16 32 73 19<br> |
− | + | Email: igem@chem.kuleuven.be<br> | |
</p> | </p> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="whiterow"></div> | ||
<div id="footer"> | <div id="footer"> | ||
Line 310: | Line 372: | ||
width="95%"></a> | width="95%"></a> | ||
</div> | </div> | ||
+ | <div id="saillart"> | ||
+ | <a href="http://www.glasatelier-saillart.be/English/english.html"><img src="https://static.igem.org/mediawiki/2015/c/ce/KU_Leuven_Sponsor_Saillard.png" alt="Glasatelier Saillart" width="95%"></a> | ||
+ | </div> | ||
<div id="kuleuven"> | <div id="kuleuven"> | ||
<a href="http://www.kuleuven.be/english"><img alt="bioSCENTer" | <a href="http://www.kuleuven.be/english"><img alt="bioSCENTer" | ||
Line 321: | Line 386: | ||
</div> | </div> | ||
<div id="kolo"> | <div id="kolo"> | ||
− | <a | + | <a><img alt="Ko-Lo Instruments" |
src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png" | src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png" | ||
− | |||
− | |||
− | |||
− | |||
− | |||
width="95%"></a> | width="95%"></a> | ||
</div> | </div> | ||
Line 338: | Line 398: | ||
width="95%"></a> | width="95%"></a> | ||
</div> | </div> | ||
− | <div id="thermofisher"> | + | <div class="logonormal"> |
− | <a href="https://www.fishersci.com/us/en/home.html"><img | + | <div id="regensys"> |
− | src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" | + | <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a> |
− | width="95%"></a> | + | </div> |
+ | <div class="whiterow"></div> | ||
+ | <div id="thermofisher"> | ||
+ | <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a> | ||
+ | </div> | ||
</div> | </div> | ||
+ | <div class="logonormal2"> | ||
<div id="vwr"> | <div id="vwr"> | ||
− | <a | + | <a href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+¤tLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png" alt="VWR" width="95%"></a> |
− | href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+¤tLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img alt="VWR" | + | </div> |
− | src="https://static.igem.org/mediawiki/2015/ | + | <div class = "whiterow"></div> |
− | width=" | + | <div id="lgc"> |
+ | <a href="http://www.lgcgroup.com/our-science/genomics-solutions/#.Vfx9V9yLTIU"> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_LOGO_LGC.png" alt="LGC Genomics" width="80%"> | ||
+ | </a> | ||
+ | </div> | ||
</div> | </div> | ||
<div id="footerimg"> | <div id="footerimg"> | ||
Line 354: | Line 423: | ||
width="95%"> | width="95%"> | ||
</div> | </div> | ||
− | <div id="gimv"> | + | <div class="logonormal2"> |
− | <a href="http://www.gimv.com/en"><img alt="Gimv" | + | <div class="logonormal2"> |
− | src="https://static.igem.org/mediawiki/2015/ | + | <div id="gimv"> |
− | width="95%"></a> | + | <a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a> |
+ | </div> | ||
+ | <div class = "whiterow"></div> | ||
+ | <div id="sopach"> | ||
+ | <a href="http://www.sopachem.com/"><img src="https://static.igem.org/mediawiki/2015/5/55/KU_Leuven_Sopachem.jpeg" alt="Sopachem" width="95%"></a> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class = "whiterow"></div> | ||
+ | <div id="sopach"> | ||
+ | <a href="http://www.sopachem.com/"><img src="https://static.igem.org/mediawiki/2015/5/55/KU_Leuven_Sopachem.jpeg" alt="Sopachem" width="95%"></a> | ||
+ | </div> | ||
</div> | </div> | ||
<div id="machery"> | <div id="machery"> | ||
Line 365: | Line 444: | ||
</div> | </div> | ||
<div class="logosmall"> | <div class="logosmall"> | ||
− | <div id="sigma"> | + | <div id="sigma"> |
− | <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img | + | <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a> |
− | src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" | + | </div> |
− | width="95%"></a> | + | <div class="whiterow"></div> |
− | </div> | + | <div id="egilab"> |
− | <div id=" | + | <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a> |
− | <a href="http://www.egilabo.be/"><img alt="Egilabo" | + | </div> |
− | src="https://static.igem.org/mediawiki/2015/ | + | <div class="whiterow"></div> |
− | + | <div id="novolab"> | |
− | </div> | + | <a href="https://www.novolab.be/"><img src="https://static.igem.org/mediawiki/2015/4/4c/KU_Leuven_Novalab.png" alt="Novolab" height="95%"></a> |
− | </div> | + | </div> |
+ | </div> | ||
</div> | </div> | ||
+ | <script type="text/javascript" src="https://2015.igem.org/Template:KU_Leuven/Javascript? | ||
+ | action=raw&ctype=text/javascript"></script> | ||
+ | </body> | ||
+ | <script> | ||
+ | $("document").ready(function(){ | ||
+ | $("#toggleone").hide(); | ||
+ | $("#toggletwo").hide(); | ||
+ | $("#togglethree").hide(); | ||
+ | $("#togglefourhalf").hide(); | ||
+ | $("#togglethreehalf").hide(); | ||
+ | $("#togglefour").hide(); | ||
+ | $("#togglefive").hide(); | ||
+ | $("#togglesix").hide(); | ||
+ | $("#toggleseven").hide(); | ||
+ | $("#toggleeight").hide(); | ||
+ | $("#togglenine").hide(); | ||
− | |||
+ | }); | ||
+ | |||
+ | </script> | ||
<script> | <script> | ||
$(".toggleone").click(function () { | $(".toggleone").click(function () { |
Latest revision as of 11:24, 10 November 2015
Protocols
Introduction
Experiments started with the construction of devices that contained constitutive
promoters with low (J23117), medium (J23106) and higher (J23101) strength.
Each promoter was coupled to BioBrick I13504, containing a RBS, GFP protein and a double terminator.
The above mentioned BioBrick and the promoters were transformed in E. cloni competent cells. The cells were grown on LB (Sigma-Aldrich) 1.5% agar (VWR Chemicals) plates with chloramphenicol (from Acros Organics) as a selection
marker. As a positive control, cells were also transformed with the pUC19 plasmid and
plated on LB plates containing ampicillin. E. cloni without any
plasmid was also plated as a negative control on LB plates containing chloramphenicol.
Transformation of the BioBricks was performed twice by using chemically competent
cells. The first time, no colonies from any of the four BioBricks were obtained. The
second time, only a few colonies grew. Nevertheless, the positive controls were
correct every time and the transformation efficiency of our E. cloni was previously proven to be very high. Therefore, we switched to electroporation. This technique showed a higher efficiency and enough
colonies grew to perform the measurements.
Thereafter, the BioBrick Assembly Method was used to combine the promoters with GFP.
Subsequently, electrocompetent E. cloni cells were transformed,
plated on LB agar plates with antibiotic selection markers, illuminated with blue/UV-light to check for the presence of GFP, and thus
a functional device.
For the fluorescent measurements, liquid cultures (3 mL-LB + Antibiotic) were inoculated in polypropylene round-bottom tubes and incubated for 16
to 18 hours in a shaking incubator (200 rpm) at 37 °C. The
fluorescence data from cells grown to an OD of ~0.5 (if the OD was higher, it was brought
in the range 0.48-0.52) were measured at 300 nm. Finally, the fluorescence data were collected
from the overnight cultures of the constructed devices with excitation and
emission wavelengths of 483 nm and 525 nm respectively in a 96-well plate by a
Tecan Safire2 monochromator MTP Reader. Besides, the absorbance measurements at 600
nm were repeated in the plate reader to normalize for cell density.
Methodology
Worksheet
Our wetlab team worked well together to fulfill this challenge. Vincent Van Deuren and Laurens Vandebroek performed the BioBrick assembly and the transformation experiments. The measurements were recorded by Laetitia Van Wonterghem, Ovia Margaret Thirukkumaran and Laurens Vandebroek. Laura Van Hese, Astrid Deryckere, Ines Cottignie and Vincent Van Deuren carried out the restriction digestion to check for the inserts. Finally, the results were processed by Ovia Margaret Thirukkumaran and Laurens Vandebroek and our wiki-page was filled with provided data by Vincent Van Deuren and Laetitia Van Wonterghem. Our supervisor Katarzyna Malczewska coordinated the overall works and the rest of the team members served with a helping hand whenever needed.
To grow our cells, we made use of a New Brunswick Innova® 43/43R Shaker purchased from Eppendorf. This incubator has a throw of 2.54 cm. Our devices were measured by a Tecan Safire2 monochromator MTP Reader. This machine was last calibrated on the 31th of March in 2015 by Tecan and our measurements took place on the 25th of August in 2015. The cells were excited at 483 nm and the emission was recorded at 525 nm. To capture the light emission, a Quad4 Monochromator was used. The absorbance was measured at 600 nm with a sampling frequency of 0.11 seconds/ sample while the sampling frequency of the fluorescence was 0.15 seconds/sample.
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be