Difference between revisions of "Team:Edinburgh/Improved Part"

 
(9 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
 
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
 
     </head>
 
     </head>
<!-- menu -->  
+
  <!-- menu -->  
 
<div id="custom-bootstrap-menu" class="navbar navbar-default navbar-fixed-top" role="navigation">
 
<div id="custom-bootstrap-menu" class="navbar navbar-default navbar-fixed-top" role="navigation">
 
     <div class="container-fluid">
 
     <div class="container-fluid">
Line 36: Line 36:
 
                       <li><a href="https://2015.igem.org/Team:Edinburgh/DNPBiosensor">DNP Biosensor</a></li>
 
                       <li><a href="https://2015.igem.org/Team:Edinburgh/DNPBiosensor">DNP Biosensor</a></li>
 
                       <li><a href="https://2015.igem.org/Team:Edinburgh/PMABiosensor">PMA Biosensor</a></li>
 
                       <li><a href="https://2015.igem.org/Team:Edinburgh/PMABiosensor">PMA Biosensor</a></li>
                       <li><a href="https://2015.igem.org/Team:Edinburgh/CBD">Making it Stick</a></li>            
+
                       <li><a href="https://2015.igem.org/Team:Edinburgh/CBD">Making it Stick</a></li>            
                       <li><a href="https://2015.igem.org/Team:Edinburgh/Results">Results</a></li>
+
                       <li><a href="https://2015.igem.org/Team:Edinburgh/Results">Limits of Detection</a></li>
 
                     </ul>
 
                     </ul>
 
                   </li>
 
                   </li>
Line 85: Line 85:
 
                     </ul>
 
                     </ul>
 
                   </li>
 
                   </li>
                   <li><a href="https://2015.igem.org/Team:Edinburgh/MedalCriteria">Medal Criteria</a></li>   
+
                   <li><a href="https://2015.igem.org/Team:Edinburgh/MedalCriteria">Accomplishments</a></li>   
 
             </ul>
 
             </ul>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
</div>
 
</div>
 
  
 
     <!-- End of menu  -->
 
     <!-- End of menu  -->
Line 121: Line 120:
 
           <h4 class="panel-title">
 
           <h4 class="panel-title">
 
             <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseOne" aria-expanded="false" aria-controls="collapseOne">
 
             <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseOne" aria-expanded="false" aria-controls="collapseOne">
               Laccase TVEL5 in RFC25 BBa_K1615067
+
               Laccase TVEL5 in RFC25 (BBa_K1615067)
            </a>
+
        </a>
 
           </h4>
 
           </h4>
 
         </div>
 
         </div>
         <div id="collapseOne" class="panel-collapse collapse in" role="tabpanel" aria-labelledby="headingOne">
+
         <div id="collapseOne" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingOne">
 
           <div class="panel-body">
 
           <div class="panel-body">
            <div class="col-md-6">
 
 
               <p style="color: black;">
 
               <p style="color: black;">
              <h2>Materials</h2>
+
            Laccases are glycosylated polyphenol oxidases and have four copper ions per molecule<sup>1</sup>. This allows them to catalyse the reduction of O<sub>2</sub> to 2H<sub>2</sub>O while oxidising an aromatic substrate<sup>2</sup>. This laccase is coded by the structural gene <i>lcc</i> in <i>Trametes versicolor</i>, a species of white rot fungus<sup>3</sup>.
              Laccases are glycosylated polyphenol oxidases and have four copper ions per molecule<sup>1</sup>. This allows them to catalyse the reduction of O<sub>2</sub> to 2H<sub>2</sub> while oxidising an aromatic substrate<sup>2</sup>. This laccase is coded by the structural gene <i>lcc</i> in <i>Trametes versicolor</i>, a species of white rot fungus<sup>3</sup>.  
+
<br>
 +
<br>
 +
To increase the functions of laccase, we took the sequence from iGEM12_Bielefeld-Germany laccase BBa_K863030 and codon optimised it for the chassis <i>Escherichia coli</i>. We then made it RFC25 compatible by adding the prefix and suffix and removing all illegal restriction sites. This laccase can now be used in protein fusions as there is an in-frame 6-nucleotide scar.
 
<br>
 
<br>
 
<br>
 
<br>
To increase the functions of laccase, we took the sequence from iGEM12_Bielefeld-Germany laccase BBa_K863030 and codon optimised it for the chassis <i>Esherichia coli</i>. We then made it RFC25 compatible by added the prefix and suffix and removing all illegal restriction sites. This laccase can now be fused to other protein genes with an in-frame 6-nucleotide scar.
 
 
<br>
 
<br>
 
<br>
 
<br>
 
<sup>1</sup>Lontie, R. (1984). <i>Copper proteins and copper enzymes</i> (Vol. 2). CRC.
 
<sup>1</sup>Lontie, R. (1984). <i>Copper proteins and copper enzymes</i> (Vol. 2). CRC.
<br><sup>2</sup>Thurston, C. F. (1994). The structure and function of fungal laccases. <i>Microbiology</i>, 140(1), 19-26.
+
<sup>2</sup>Thurston, C. F. (1994). The structure and function of fungal laccases. <i>Microbiology</i>, 140(1), 19-26.
<br><sup>3</sup>Collins, P. J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. <i>Applied and Environmental Microbiology</i>, 63(9), 3444-3450.
+
<sup>3</sup>Collins, P. J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. <i>Applied and Environmental Microbiology</i>, 63(9), 3444-3450.
 
+
 
+
  
 
               </ul>
 
               </ul>
 
             </p>
 
             </p>
            </div>
+
 
            <div class="col-md-6">
+
              <p class="text-muted">
+
              <h2>Procedure</h2>
+
              <ul>
+
                <li>1. Mix the agarose with the 1X TAE buffer in a flask.
+
                <li>2. Heat the mixture until all the agarose is dissolved.
+
                <li>3. Swirl the flask under cold running water to cool the mixture.
+
                <li> 4. Add the gel stain.
+
                <li>5. Pour into an assembled gel tray and let it cool.
+
              </uL>
+
            </p>
+
 
             </div>
 
             </div>
 
           </div>
 
           </div>
Line 164: Line 150:
 
           <h4 class="panel-title">
 
           <h4 class="panel-title">
 
             <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseTwo" aria-expanded="false" aria-controls="collapseTwo">
 
             <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseTwo" aria-expanded="false" aria-controls="collapseTwo">
             Morphine-6-Dehydrogenase BBa_K1615000
+
             mRFP (BBa_K1615089)
 
             </a>
 
             </a>
 
           </h4>
 
           </h4>
Line 170: Line 156:
 
         <div id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo">
 
         <div id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo">
 
           <div class="panel-body">
 
           <div class="panel-body">
            <div class="col-md-6">
 
 
               <p>
 
               <p>
              <h2>Materials</h2>
+
                 RFP is important in synthetic biology as a visualisation tool. While multiple versions of RFP exist in the registry, only one is RFC25 compatible. This RFP (BBa_K1351021) contains a Shine-Dalgarno sequence in the RFC25 prefix which precludes it from using the common lac expression cassette (BBa_K314103) which already contains a ribosome binding site and only produces RFC10 fusions. By adding the RFC25 prefix without the Shine-Dalgarno sequence we hope to improve the utility of this RFP.
              <ul>
+
                 The structural gene morphine-6-dehyrogenase (<i>morA</i>) was first isolated from <i>Pseudomonas putida</i> M10 as it is capable of growth with morphine as its sole carbon source<sup>1</sup>. Morphine dehydrogenase catalyses the oxidation of both morphine and codeine to produce morphinone and codeinone. During this process NADP<sup>+</sup> is reduced to NADPH which means that it is frequently used to detect morphine and codeine enzymatically<sup>2</sup>.
+
 
<br>
 
<br>
 +
We visualised RFP using multiple methods to show that it was folding and expressing.
 
<br>
 
<br>
To test the morphine dehydrogenase activity it can be coupled with codeine and NADP<sup>+</sup> to produce codeinone and NADPH. The amount of NADPH produced can be measured at x nm.
+
<img src="https://static.igem.org/mediawiki/2015/c/cb/RFP_plate.jpeg" class="img-responsive">
 
<br>
 
<br>
 +
This plate shows our RFP under the control of the lac expression cassette from iGEM10_Washington (BBa_K314103).
 
<br>
 
<br>
Design: To make this gene standardised it was codon optomised for the chassis <i>Esherichia coli</i> as well as making it RFC25 compatible which required getting rid of all illegal restriction sites in the gene sequence.
+
<img src="https://static.igem.org/mediawiki/2015/8/81/RFP_pellet.jpeg" class="img-responsive">
 
<br>
 
<br>
 +
When grown in 10 mL of LB + chloramphenicol and spun down, a pink pellet can be visualised.
 
<br>
 
<br>
<sup>1</sup>Bruce, N. C., Wilmot, C. J., Jordan, K. N., Trebilcock, A. E., Stephens, L. D. G., & Lowe, C. R. (1990). Microbial degradation of the morphine alkaloids: identification of morphinone as an intermediate in the metabolism of morphine by Pseudomonas putida M10. <i>Archives of microbiology</i>, 154(5), 465-470.
+
<img src="https://static.igem.org/mediawiki/2015/c/c1/BBa_K1615089_lysate.jpeg" class="img-responsive">
<br><sup>2</sup>Rathbone, D. A., Holt, P. J., Lowe, C. R., & Bruce, N. C. (1997). Molecular analysis of the Rhodococcus sp. strain H1 her gene and characterization of its product, a heroin esterase, expressed in Escherichia coli. <i>Applied and environmental microbiology</i>, 63(5), 2062-2066.
+
<br>
 +
To ensure the fluorescence of our RFP we aliquoted 200 µL of the crude cell lysate into a 96 well plate and visualised it under blue light transilluminator. As you can see, it fluoresces consistently in all three samples.
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2015/f/ff/BBa_K1615089_saturation.jpeg" class="img-responsive">
 +
<br>
 +
We wanted to test to see how long it would take to fully saturate an isostandard Whatman 54 paper chad with RFP. This graph shows that the chad is saturated almost immediately.
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2015/1/12/BBa_K1615089_dissociation.jpeg" class="img-responsive">
 +
<br>
 +
We tested the dissociation of this part on Whatman 54 using isostandard chads. This involved incubating the chads in the crude cell lysate for 10 minutes and then washing them with PBS for various periods time to test the binding affinity of this CBD. The results show a gradual loss of fluorescence indicating the RFP leaving the paper.
 +
<br>
 +
<b>Design:</b> There is an existing RFC25 compatible RFP (BBa_K1351021) in the registry from iGEM14_LMU-Munich which was the basis for our sequence. We then added the RFC25 prefix without the Shine-Dalgarno sequence.
  
              </ul>
 
 
             </p>
 
             </p>
             </div>
+
              
            <div class="col-md-6">
+
              <p>
+
              <h2>Procedure</h2>
+
              <ul>
+
                <li>1. Place gel tray into the electrophoresis apparatus.
+
                <li>2. Pour 1X TAE so that the gel is covered by buffer.
+
                <li>3. Prepare the samples by adding the appropriate amount of loading dye.
+
                <li>4. Load samples and DNA ladder into wells on the gel.
+
                <li>5. Run the gel at roughly 100V for around an hour
+
 
+
              </uL>
+
            </p>
+
            </div>
+
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 209: Line 192:
 
           <h4 class="panel-title">
 
           <h4 class="panel-title">
 
             <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
 
             <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
               Monoamine oxidase A BBa_K1615022
+
               CBDcipA (BBa_K1615111)
 
             </a>
 
             </a>
 
           </h4>
 
           </h4>
Line 215: Line 198:
 
         <div id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
         <div id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
           <div class="panel-body">
 
           <div class="panel-body">
          <div class="col-md-6">
 
 
               <p>
 
               <p>
              <h2>Materials</h2>
+
 
              <ul>
+
Cellulose binding domains (CBDs) mediate the binding of enzymes to cellulose<sup>1</sup>. CBDs are divided into over a dozen families based on their sequence homology <sup>2</sup>. Family III of CBDs is divided into a, b and c with CBDCipA belonging to family III a; the clostridial scaffoldin CBDs<sup>3</sup>. CBDCipA was identified in <i>Clostridium thermocellum</i> and is capable of binding to crystalline cellulose in a reversible manner<sup>4</sup>. CBDCipA includes endogenous linker sequences at both the N and C-terminals which help to prevent the CBD from interfering with the folding of any other protein it may be fused to.
                Monoamine oxidase A is coded by the gene <i>maoA</i> and is subject to catabolite and ammonium ion repression<sup>1</sup>. Amine oxidases that contain copper/topaquinone (TPQ), like monoamine oxidase A, convert primary amines into their corresponding aldehydes, hydrogen peroxide and ammonia<sup>2</sup>.  
+
 
<br>
 
<br>
 +
<img src="https://static.igem.org/mediawiki/2015/7/76/CBDcipA_graph.jpeg">
 
<br>
 
<br>
To test the activity of monoamine oxidase A, tyramine can be used as a substrate and its corresponding aldehyde as well as ammonia and hydrogen peroxide will be produced. When the hydrogen peroxide is coupled with horseradish peroxidase and Amplex red, resorufin, a red colour, will be produced.
+
To characterise the binding of CBDCipA to Whatman 54 we fused it to RFP (BBa_K1615089) at both the N and C terminals and looked at dissociation of the CBD over time.
 +
 
 +
 
 +
<b>Design:</b> In an effort to improve the CBDCipA existing in the registry from iGEM14_Imperial we used the sequence from BBa_K1321014 and made it RFC25 compatible by removing the illegal EcoRI site at 148.
 
<br>
 
<br>
 
<br>
 
<br>
Design: This monoamine oxidase A sequence was found in <i>Klebsiella pneumoniae</i><sup>3</sup> and was codon optimised for the chassis Escherichia coli as well as made RFC25 compatible with the corresponding prefix and suffix and illegal restriction sites were removed.
 
 
<br>
 
<br>
 
<br>
 
<br>
<sup>1</sup>Oka, M., Murooka, Y., & Harada, T. (1980). Genetic control of tyramine oxidase, which is involved in derepressed synthesis of arylsulfatase in Klebsiella aerogenes. <i>Journal of bacteriology</i>, 143(1), 321-327.
+
<sup>1</sup>Ferreira, L. M., Durrant, A. J., Hall, J., Hazlewood, G. P., & Gilbert, H. J. (1990). Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. <i>Biochem. J</i>, 269, 261-264.
<br><sup>2</sup>McIntire, W. S., & Hartmann, C. (1993). Copper-containing amine oxidases. <i>Principles and applications of quinoproteins</i>, 97-171.
+
<br><sup>2</sup>Tomme, P., Warren, R. A. J., Miller, R. C., Kilburn, D. G. & Gilkes,
<br><sup>3</sup>Sugino, H., Sasaki, M., Azakami, H., Yamashita, M., & Murooka, Y. (1992). A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene. <i>Journal of bacteriology</i>, 174(8), 2485-2492.
+
N. R. (1995). Enzymatic Degradation of Insoluble Polysaccharides, edited by J. M. Saddler & M. H. Penner, pp. 142±161. Washington, DC: American Chemical Society
 +
<br><sup>3</sup>Shimon, L. J., Belaich, A., Belaich, J. P., Bayer, E. A., Lamed, R., Shoham, Y., & Frolow, F. (2000). Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 Å resolution. <i>Acta Crystallographica Section D: Biological Crystallography</i>, 56(12), 1560-1568.
 +
<br><sup>4</sup>Bayer, E. A., Chanzy, H., Lamed, R., & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. <i>Current opinion in structural biology</i>, 8(5), 548-557.
  
              </ul>
 
 
             </p>
 
             </p>
            </div>
+
 
            <div class="col-md-6">
+
              <p>
+
              <h2>Procedure</h2>
+
              <ul>
+
                <li>1. Pour 10ml of LB into a 50ml Falcon tube.
+
                <li>2. Pipette 10µl of antibiotic into the broth.
+
                <li>3. Dip loop in ethanol and flame to sterilise. Once it is cool, pick colony and transfer to a 50ml Falcon tube.
+
                <li>4. Incubate at 37°C overnight in a shaking incubator.
+
              </uL>
+
            </p>
+
            </div>
+
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
      
 
      
      <footer>
+
 
        <p class="pull-right"><a href="#">Back to top</a></p>
+
        <p>&copy; 2015 EdiGEM &middot; <a href="#">Privacy</a> &middot; <a href="#">Terms</a></p>
+
      </footer>
+
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 18:55, 20 November 2015

Laccases are glycosylated polyphenol oxidases and have four copper ions per molecule1. This allows them to catalyse the reduction of O2 to 2H2O while oxidising an aromatic substrate2. This laccase is coded by the structural gene lcc in Trametes versicolor, a species of white rot fungus3.

To increase the functions of laccase, we took the sequence from iGEM12_Bielefeld-Germany laccase BBa_K863030 and codon optimised it for the chassis Escherichia coli. We then made it RFC25 compatible by adding the prefix and suffix and removing all illegal restriction sites. This laccase can now be used in protein fusions as there is an in-frame 6-nucleotide scar.



1Lontie, R. (1984). Copper proteins and copper enzymes (Vol. 2). CRC. 2Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19-26. 3Collins, P. J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63(9), 3444-3450.

RFP is important in synthetic biology as a visualisation tool. While multiple versions of RFP exist in the registry, only one is RFC25 compatible. This RFP (BBa_K1351021) contains a Shine-Dalgarno sequence in the RFC25 prefix which precludes it from using the common lac expression cassette (BBa_K314103) which already contains a ribosome binding site and only produces RFC10 fusions. By adding the RFC25 prefix without the Shine-Dalgarno sequence we hope to improve the utility of this RFP.
We visualised RFP using multiple methods to show that it was folding and expressing.

This plate shows our RFP under the control of the lac expression cassette from iGEM10_Washington (BBa_K314103).

When grown in 10 mL of LB + chloramphenicol and spun down, a pink pellet can be visualised.

To ensure the fluorescence of our RFP we aliquoted 200 µL of the crude cell lysate into a 96 well plate and visualised it under blue light transilluminator. As you can see, it fluoresces consistently in all three samples.

We wanted to test to see how long it would take to fully saturate an isostandard Whatman 54 paper chad with RFP. This graph shows that the chad is saturated almost immediately.

We tested the dissociation of this part on Whatman 54 using isostandard chads. This involved incubating the chads in the crude cell lysate for 10 minutes and then washing them with PBS for various periods time to test the binding affinity of this CBD. The results show a gradual loss of fluorescence indicating the RFP leaving the paper.
Design: There is an existing RFC25 compatible RFP (BBa_K1351021) in the registry from iGEM14_LMU-Munich which was the basis for our sequence. We then added the RFC25 prefix without the Shine-Dalgarno sequence.

Cellulose binding domains (CBDs) mediate the binding of enzymes to cellulose1. CBDs are divided into over a dozen families based on their sequence homology 2. Family III of CBDs is divided into a, b and c with CBDCipA belonging to family III a; the clostridial scaffoldin CBDs3. CBDCipA was identified in Clostridium thermocellum and is capable of binding to crystalline cellulose in a reversible manner4. CBDCipA includes endogenous linker sequences at both the N and C-terminals which help to prevent the CBD from interfering with the folding of any other protein it may be fused to.

To characterise the binding of CBDCipA to Whatman 54 we fused it to RFP (BBa_K1615089) at both the N and C terminals and looked at dissociation of the CBD over time. Design: In an effort to improve the CBDCipA existing in the registry from iGEM14_Imperial we used the sequence from BBa_K1321014 and made it RFC25 compatible by removing the illegal EcoRI site at 148.



1Ferreira, L. M., Durrant, A. J., Hall, J., Hazlewood, G. P., & Gilbert, H. J. (1990). Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem. J, 269, 261-264.
2Tomme, P., Warren, R. A. J., Miller, R. C., Kilburn, D. G. & Gilkes, N. R. (1995). Enzymatic Degradation of Insoluble Polysaccharides, edited by J. M. Saddler & M. H. Penner, pp. 142±161. Washington, DC: American Chemical Society
3Shimon, L. J., Belaich, A., Belaich, J. P., Bayer, E. A., Lamed, R., Shoham, Y., & Frolow, F. (2000). Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 56(12), 1560-1568.
4Bayer, E. A., Chanzy, H., Lamed, R., & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. Current opinion in structural biology, 8(5), 548-557.