Difference between revisions of "Team:KU Leuven/Modeling/Top"

Line 51: Line 51:
 
   <p>
 
   <p>
 
     The Keller segel model used is <sub> <a href="#ref1">[1] </a></sub>:
 
     The Keller segel model used is <sub> <a href="#ref1">[1] </a></sub>:
     $$\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$$
+
     $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$
  
 
     </br>
 
     </br>

Revision as of 12:51, 23 July 2015

1-D continuous model

The Keller segel model used is [1] : $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

References

Reference 1