Difference between revisions of "Team:KU Leuven/Modeling/Top"

Line 11: Line 11:
 
</script>
 
</script>
 
<script type="text/javascript"
 
<script type="text/javascript"
   src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+
   src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_SVG.js">
 
</script>
 
</script>
  

Revision as of 13:15, 23 July 2015

1-D continuous model

The Keller segel model used is [1] : $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

References

Reference 1