Difference between revisions of "Team:KU Leuven/Modeling/Top"
Line 11: | Line 11: | ||
</script> | </script> | ||
<script type="text/javascript" | <script type="text/javascript" | ||
− | src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS- | + | src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_SVG.js"> |
</script> | </script> | ||
Revision as of 13:15, 23 July 2015
1-D continuous model
The Keller segel model used is [1] : $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$ When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
References
Reference 1