Difference between revisions of "Team:KU Leuven/Modeling/Internal"

(Created page with "{{KU_Leuven}} {{KU_Leuven/css}} {{KU_Leuven/modeling/top/css}} <html> <!-----------------------------------load mathJax related stuff-------------------------------------------...")
 
Line 52: Line 52:
 
<div class="summarytext1">
 
<div class="summarytext1">
 
  <div class="part">
 
  <div class="part">
   <video height="100%" controls>
+
    
    <source src="https://static.igem.org/mediawiki/2015/8/81/Simulation1dCont.ogg" type="video/ogg">-->
+
    Failed to load video.
+
  </video>
+
 
+
  <p>
+
<br/>
+
    The video above shows how the proposed method for pattern formation works. Two cell types A and B are interacting. Type
+
    A cells produce a repellent called leucine which causes the cells of type B to move away. At the same time type A cells
+
    also produce OO-AHL, which is required by the cells of type B to move. Initially colonies of the two cell types are placed
+
    at the center of the dish. As molecule production within the type A cells kicks in, the repellent and AHL concentrations
+
    start to increase. This triggers the type B cells to move away from the center. Movement will contiue until the concentration
+
    of AHL is insuficcent for the type B cells to move further.
+
   
+
</br>
+
 
     The Keller segel model type model we used is given by the following equation system:
 
     The Keller segel model type model we used is given by the following equation system:
 
     $$\frac{\partial A}{\partial t} = D_a \bigtriangledown^2 A + \gamma A(1 - \frac{A}{k_{p}}),$$
 
     $$\frac{\partial A}{\partial t} = D_a \bigtriangledown^2 A + \gamma A(1 - \frac{A}{k_{p}}),$$
Line 72: Line 58:
 
     $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B +  k_r A - k_{lossH} R $$
 
     $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B +  k_r A - k_{lossH} R $$
 
     $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B +  k_h A - k_{lossR} H . $$
 
     $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B +  k_h A - k_{lossR} H . $$
    With:  </br>
+
      
    $$ P(B,H,R) = \frac{-B K_{c} H}{R}. $$
+
    The model has been derived while looking at <sup><a href="#ref1">[1] </a></sup> and <sup><a href="#ref2">[2] </a></sup>
+
    The terms that appear can be grouped into four categories. Every equation has a diffusion term given by
+
    $D_x \bigtriangledown^2 X$, diffusion smoothes peaks by spreading them out in space. The two equations related to cell
+
    densities contain logistic growth terms of the form $\gamma X(1-\frac{X}{k_x})$, which model the cell growth during
+
    simulation time. Finally the second equation describing the moving cells comes with a variable coefficient Poisson term
+
    $\bigtriangledown (P \bigtriangledown X)$ which describes the cell movement. Last but not least: the two bottom equations.
+
    They model concentrations, contain linear production and degradation terms, which look like $kX$. </br>
+
 
+
    To generate the video file above the system above has been discretized using a finite element approach in conjunction,
+
    with an explicit euler scheme. Finally simulation has been done using the parameters given in the table below: <br/><br/>
+
  </p>
+
  <table style="width:100%">
+
     <tr>  <th>Parameter</th>    <th>Value</th>              <th>Unit</th>        <th>Source</th>  </tr>
+
    <tr>  <td>$D_a$</td>        <td>$0.072*10^{-3}$</td>  <td>$cm^2/h$</td>  <td>following <sup><a href="#ref1">[1]
+
    </a></sup> </td>    </tr>
+
    <tr>  <td>$D_b$</td>        <td>$2.376*10^{-3}$</td>  <td>$cm^2/h$</td>  <td>following <sup><a href="#ref1">[1]
+
    </a></sup></td>    </tr>
+
    <tr>  <td>$D_r$</td>        <td>$26.46*10^{-3}$</td> <td>$cm^2/h$</td>        <td> as found in <sup><a href="#ref6">[6]</a></sup>
+
</td>    </tr> 
+
    <tr>  <td>$D_h$</td>        <td>$50*10^{-3}$</td> <td>$cm^2/h$</td>        <td>from <sup><a href="#ref3">[3]
+
    </a></sup>  </td>    </tr>
+
    <tr>  <td>$K_{c}$</td>      <td>$8.5*10^{-3}$</td>          <td>$cm^2/h$</td>      <td>guessed</td> </tr> 
+
    <tr>  <td>$\gamma$</td>      <td>$10^{-5}$</td>          <td>$h^{-1}$ </td>          <td>from <sup><a href="#ref1">[1]
+
    </a></sup></td>    </tr>
+
    <tr>  <td>$k_p$</td>      <td>$1.0 * 10^2$</td>          <td>$cl^{-1}$</td>    <td>from <sup><a href="#ref1">[1]
+
    </a></sup></td>    </tr>
+
    <tr>  <td>$k_r$</td>      <td>$1.584*10^{-4}$</td>          <td>$nmol/h$</td>    <td>computed using <sup><a href="#ref4">[4]
+
    </a></sup> and <sup><a href="#ref5">[5] </a></sup> </td>    </tr>
+
    <tr>  <td>$k_h$</td>      <td>$1.5*1.584*10^{-4}$</td>      <td>$nmol/h$</td>    <td>guessed</td>    </tr>
+
    <tr>  <td>$k_{lossH}$</td>      <td>$10^{-5}$</td>          <td>$nmol/h$</td>    <td>guessed</td>    </tr>
+
    <tr>  <td>$k_{lossR}$</td>      <td>$10^{-5}$</td>          <td>$nmol/h$</td>    <td>guessed</td>    </tr>
+
 
+
 
+
  </table>
+
  </div>
+
</div>
+
 
+
 
+
 
+
<div class="summaryheader">
+
  <div class="summaryimg">
+
  <img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_fossilBackground.png" width="100%">
+
  <div class="head">
+
    <h2> 2-D continuous model </h2>
+
  </div>
+
</div>
+
</div>
+
 
+
<div class="summarytext1">
+
<div class="part">
+
 
+
  <video width="100%" controls>
+
      <!--<source src="https://static.igem.org/mediawiki/2015/d/d2/2dSim.ogg" type="video/ogg">-->
+
        <source src="https://static.igem.org/mediawiki/2015/c/c3/FinalSim8.ogg" type="video/ogg">-->
+
      Failed to load video.
+
  </video> <br/> <br/>
+
 
+
  <video width="100%" controls>
+
      <source src="https://static.igem.org/mediawiki/2015/9/95/FinalSim7.ogg" type="video/ogg">-->
+
    Failed to load video.
+
  </video> <br/> <br/>
+
 
+
  <p> Using the equation system and described above, the model may also be simulated in two dimensions. Once more a finite
+
volume approach has been taken in connection with an explicit Euler scheme. All parameters have been kept constant with the one
+
exception of the chemotatctic sensitivity $K_c$. Which has been inreased to $Kc = 1.5 * 10^{-1}$, which leads to earlier pattern  formation.
+
  </p>
+
 
+
 
+
</div>
+
</div>
+
  
  
Line 158: Line 73:
 
<div class="part">
 
<div class="part">
 
   <p id="ref1">[1] <a href="http://www.sciencedirect.com/science/article/pii/S0006349595804005#" target="_blank"> Temporal Patterns Generated by Salmonella typhimurium, D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. 0.Budrene,l and H. C.Berg , Biophysical Journal Volume 68 May 1995 2181-2189 </a></p>
 
   <p id="ref1">[1] <a href="http://www.sciencedirect.com/science/article/pii/S0006349595804005#" target="_blank"> Temporal Patterns Generated by Salmonella typhimurium, D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. 0.Budrene,l and H. C.Berg , Biophysical Journal Volume 68 May 1995 2181-2189 </a></p>
  <p id="ref2">[2]<a href= " http://link.springer.com/book/10.1007%2F978-3-642-35497-7" target="_blank"> Hybrid modelling of individual movement and collective behaviour, B. Franz and R. Erban, DISPERSAL,
 
      INDIVIDUAL MOVEMENT AND SPATIAL ECOLOGY: A MATHEMATICAL PERSPECTIVE  Book Series: Lecture Notes in Mathematics
 
      Volume: 2071  Pages: 129-157</a> </p>
 
  <p id="ref3">[3] <a href="http://www.jbioleng.org/content/supplementary/1754-1611-6-16-s1.pdf" target="_blank" >Supplement 1 to Engineered cell-cell communication via DNA messaging, Monica E Ortiz and Drew Endy,
 
    Journal of Biological Engineering</a>  </p>
 
  <p id="ref4">[4] <a href="http://www.biomedcentral.com/1471-2164/9/102" target="_blank">Protein abundance profiling of the Escherichia coli cytosol, Yasushi Ishihama1, Thorsten Schmidt, Juri
 
    Rappsilber, Matthias Mann, F Ulrich Hartl, Michael J Kerner and Dmitrij Frishman38,
 
    BMC Genomics 2008, 9:102</a> </p>
 
  <p id="ref5">[5] <a href="http://onlinelibrary.wiley.com/doi/10.1111/febs.12609/epdf" target="_blank">The specificity and kinetic mechanism of branched-chain amino acid amino transferase from Escherichia coli
 
    studied with a new improved coupled assay procedure and the enzyme’s potential for biocatalysis, Xuejing Yu, Xingguo Wang
 
    and Paul C. Engel,  the FEBS Journal</a> </p>
 
<p id="ref6">[6] <a href="http://pubs.acs.org/doi/pdf/10.1021/je060149b" target="_blank"> Infinite Dilution Binary Diffusion Coefficients of Several $\alpha $-Amino Acids in Water over a Temperature Range from (293.2 to 333.2) K with the Taylor Dispersion
 
Technique, Tatsuya Umecky, Tomoyuki Kuga, and Toshitaka Funazukuri, J. Chem. Eng. Data 2006,51,1705-1710 </a> </p>
 
</div>
 
</div>
 
  
 
<!------------------------------------------------------Source code files--------------------------------------------------------->
 
<!------------------------------------------------------Source code files--------------------------------------------------------->

Revision as of 16:14, 27 July 2015

1-D continuous model

The Keller segel model type model we used is given by the following equation system: $$\frac{\partial A}{\partial t} = D_a \bigtriangledown^2 A + \gamma A(1 - \frac{A}{k_{p}}),$$ $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (P(B,H,R) \bigtriangledown R)+ \gamma B(1 - \frac{B}{k_{p}}), $$ $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B + k_r A - k_{lossH} R $$ $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B + k_h A - k_{lossR} H . $$

References