Difference between revisions of "Team:Bordeaux/Template:HomeAbstract"

 
(81 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
<html>
 
<html>
<!--section id="abstract"-->
+
<section align="center">
<section id="statistic" class="parallax" style="background-image: url(http://www.google.fr/url?source=imglanding&ct=img&q=http://static3.depositphotos.com/1007307/228/i/950/depositphotos_2285674-Grapevine-border-with-pink-grapes.jpg&sa=X&ei=-vZyVfDgHcz_UorRgdAB&ved=0CAkQ8wc&usg=AFQjCNHCVOuGLUtScJ6jkLHKAe4Cf2w-fg);">
+
<div class="overlay"></div>
+
 
     <div class="content-wrapper">
 
     <div class="content-wrapper">
         <div class="col-lg-12">
+
         <div class="col-lg-10 col-lg-offset-1">
            <h3>Abstract</h3>
+
            <article class="row">
+
                    <div class="col-md-10 col-sm-10 col-md-offset-1 col-sm-offset-1 text-left animated hiding" data-animation="fadeInDown" data-delay="500">
+
<center>
+
<p>
+
                  <FONT color=#F6358A> <big> This year, iGEM Bordeaux is focusing their energy on finding an eco-friendly solution to prevent Downy Mildew, a grapevine disease caused by a parasite called Plasmapora viticola. Currently, vinyards spray their fields with copper sulfate, also known as "bouillie bordelaise" to protect their grapevines. Although this treatment is efficient and does help to protect the plant from harmful microorganisms, this  method  has a  bad environmental  and  sanitary impact since the copper present in the treatment infiltrates in the ground and prevents the growth of other types of plants, therefore impacting the biodiversity of the region. Furthermore,  a  long  term  contamination  can  create  symptoms  like  headache, stomachache, flu-like  statement  (the  “metal-fume  fever”),  or  renal  and hepatic dysfunctions for humans living in these contaminated ares.
+
  
To solve these  problems, our 2015 team proposes an alternative treatment: replacing copper sulfate by Curdlan, a sugar biopolymer which stimulates the plant's immune system. All this will be done using non-pathogenic micro-organisms which can easily be grown in our lab: Escherichia coli and Saccharomyces cerevisiae </big></FONT>
+
<h3 > To sum it up </h3>
</p>
+
   
</center>
+
<h6 align ="justify"> We plan on using two host organisms: <i> Sacharomyces cerevisiae </i> which naturally produces Curdlan and <i> Escherichia coli </i>, the most common organism used for synthetic biology. Our genes will be synthethized industrially by IDT and will be inserted respectively in <i> Saccharomyces cerevisiae </i> or <i> Escherichia coli </i> with their appropriate promoters. These modified cells will then be cultivated to produce our Curdlan molecule in large quantities. The final step of our project will be to extract the curdlan molecule, to quantify our production and to sulfate the molecules if possible. </h6>
                    </div>
+
<br>
            </article>
+
 
        </div>
+
<img style="width:50vw;height:35vw;"src='https://2015.igem.org/File:Logo_Cured_Vine.png'>
    </div>
+
 
 +
      </div>
 +
  </div>
 
</section>
 
</section>
 
</html>
 
</html>

Latest revision as of 08:42, 29 July 2015

To sum it up

We plan on using two host organisms: Sacharomyces cerevisiae which naturally produces Curdlan and Escherichia coli , the most common organism used for synthetic biology. Our genes will be synthethized industrially by IDT and will be inserted respectively in Saccharomyces cerevisiae or Escherichia coli with their appropriate promoters. These modified cells will then be cultivated to produce our Curdlan molecule in large quantities. The final step of our project will be to extract the curdlan molecule, to quantify our production and to sulfate the molecules if possible.