Difference between revisions of "Team:Aalto-Helsinki/Modeling micelle"

m
m
Line 17: Line 17:
 
<p>--Basic picture of micelle to explain what is micelle here? Or is it essential since we explain it at the next part?--</p>
 
<p>--Basic picture of micelle to explain what is micelle here? Or is it essential since we explain it at the next part?--</p>
  
<p>We have made a <a href="https://2015.igem.org/Team:Aalto-Helsinki/Modeling_synergy">model of effectiveness of having enzymes close together</a>, but our team also wanted to know if the micelle structure was possible at the first place. We know (references as links for this statement!) that it is possible to form the micelle without any proteins at the end and with green fluorecent protein, but could CAR and ADO be part of this kind of structure? </p>
+
<p>We have made a <a href="https://2015.igem.org/Team:Aalto-Helsinki/Modeling_synergy">model of effectiveness of having enzymes close together</a>, but our team also wanted to know if the micelle structure was possible at the first place. We know (references as links for this statement!) that it is possible to form the micelle without any proteins at the end and with green fluorecent protein (Gfp), but could CAR and ADO be part of this kind of structure? </p>
  
  
Line 35: Line 35:
 
<p>--picture of two amphiphilic proteins with ADO and CAR where all the above numbers are marked as well as total lengths--</p>
 
<p>--picture of two amphiphilic proteins with ADO and CAR where all the above numbers are marked as well as total lengths--</p>
 
-->
 
-->
<h2>Calculations</h2>
+
<h2>Calculations for Ado and Car</h2>
  
 
<!--<p>We can estimate how many amphiphilic proteins we can theoretically fit in one micelle by calculating how big solid angles they take with attached enzymes. The easiest way to estimate the solid angles is to think the amphiphilic proteins linked with enzymes as cones. We can calculate the solid angle $\Omega$ for these by \[ \Omega = 2\pi \left( 1-\cos(\theta) \right), \] where $\theta$ is half of the apex angle. So for CAR we get \[ \Omega_{CAR} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{3.5}{14.1}\right)\right) \right) \approx 0.185 \text{ rad} \] and for ADO \[  \Omega_{ADO} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{2}{9.8}\right)\right) \right) \approx 0.127 \text{ rad}.\]</p>
 
<!--<p>We can estimate how many amphiphilic proteins we can theoretically fit in one micelle by calculating how big solid angles they take with attached enzymes. The easiest way to estimate the solid angles is to think the amphiphilic proteins linked with enzymes as cones. We can calculate the solid angle $\Omega$ for these by \[ \Omega = 2\pi \left( 1-\cos(\theta) \right), \] where $\theta$ is half of the apex angle. So for CAR we get \[ \Omega_{CAR} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{3.5}{14.1}\right)\right) \right) \approx 0.185 \text{ rad} \] and for ADO \[  \Omega_{ADO} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{2}{9.8}\right)\right) \right) \approx 0.127 \text{ rad}.\]</p>
  
 
<p>--picture of this cone-like structure--</p>-->
 
<p>--picture of this cone-like structure--</p>-->
 +
 +
<h2>Calculations for Gfp</h2>
  
 
<h1>Discussion</h1>
 
<h1>Discussion</h1>

Revision as of 10:12, 3 August 2015

Introduction

--Picture of the pathway here, CAR, ADO and butyraldehyde highlighted to clarify what we are talking about.--

The product of second to last enzyme of our pathway, butyraldehyde, is toxic to the cell. Because of that and about 15 naturally occurring butyraldehyde-eating enzymes in the cell it is essential for the propane production that Butyraldehyde goes swiftly to the enzyme we want it to go, ADO. As the solution to this our team wanted to put CAR and ADO close together in a micelle so that butyraldehyde would go with more probability to ADO than to any other enzyme.

--Basic picture of micelle to explain what is micelle here? Or is it essential since we explain it at the next part?--

We have made a model of effectiveness of having enzymes close together, but our team also wanted to know if the micelle structure was possible at the first place. We know (references as links for this statement!) that it is possible to form the micelle without any proteins at the end and with green fluorecent protein (Gfp), but could CAR and ADO be part of this kind of structure?

Geometrical approach

Micelle structure

Calculations for Ado and Car

Calculations for Gfp

Discussion

Here text about how the results obtained show normal micelle sizes so the formation should be ok geometrically.

Here text about how we didn't take into account any forces and how this model could be improved.