Difference between revisions of "Team:KU Leuven/Modeling/Internal"

Line 55: Line 55:
 
     In the internal model we will try to simulate the dynamics of the processes in the cell. For this we use the Simbiology  toolbox in Matlab. This allows us to model the production of leucine and AHL in cell A and the changing behavior of Cell B due to the changing concentration.
 
     In the internal model we will try to simulate the dynamics of the processes in the cell. For this we use the Simbiology  toolbox in Matlab. This allows us to model the production of leucine and AHL in cell A and the changing behavior of Cell B due to the changing concentration.
  
     $$\frac{\d m_{CI}}{\d t} = \alpha_1 * CI_{gene} - d_1 * m_{CI})$$
+
     $$\frac{d m_{CI}}{d t} = \alpha_1 * CI_{gene} - d_1 * m_{CI}$$
 
     $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (P(B,H,R) \bigtriangledown R)+  \gamma B(1 - \frac{B}{k_{p}}), $$
 
     $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (P(B,H,R) \bigtriangledown R)+  \gamma B(1 - \frac{B}{k_{p}}), $$
 
     $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B +  k_r A - k_{lossH} R $$
 
     $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B +  k_r A - k_{lossH} R $$

Revision as of 15:03, 4 August 2015

1-D continuous model

In the internal model we will try to simulate the dynamics of the processes in the cell. For this we use the Simbiology toolbox in Matlab. This allows us to model the production of leucine and AHL in cell A and the changing behavior of Cell B due to the changing concentration. $$\frac{d m_{CI}}{d t} = \alpha_1 * CI_{gene} - d_1 * m_{CI}$$ $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (P(B,H,R) \bigtriangledown R)+ \gamma B(1 - \frac{B}{k_{p}}), $$ $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B + k_r A - k_{lossH} R $$ $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B + k_h A - k_{lossR} H . $$

References