Difference between revisions of "Team:Toulouse/Modeling"

Line 87: Line 87:
 
</p>
 
</p>
 
       </div>
 
       </div>
 
 
 
 
 
 
  <div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/0/04/TLSE_Attract_fig1.png" />
 
</div>
 
<div id="part1"></div><!-- ANCHOR 1 -->
 
<div class="group center">
 
<br>
 
<p>Figure 1 : <i>Varroa destructor</i> life cycle,
 
adapted from B. Alexander</p>
 
</div>
 
 
 
<div>
 
 
 
<div class="subtitle" >  
 
<h3>How to attract varroa</h3>
 
</div>
 
  
 
<div class="group center">
 
<p align="justify" style="font-size:15px;">
 
 
Just before capping, bee larvaes produce a wide range of molecules,
 
those molecules warn the mite about the upcoming capping and motivate
 
it to enter the cell [2]. 
 
Of all these molecule, scientific studies have shown that one can
 
significantly attract varroa:
 
<i>butyrate</i> [3].
 
</p>
 
</div>
 
 
 
 
<div class="group center">
 
      <div class="one_half first">
 
  <p align="justify" style="font-size:15px;">
 
  <br>
 
      Butyrate is a volatile acid which is non-toxic for honeybees
 
  nor the human being, because it is already present at physiologic
 
  concentrations in the digestive tract. Moreover this molecule
 
  is naturally
 
  produced by some bacterial strains like <i>Clostridium</i>,
 
  which is an asset
 
  for this synthetic biology project [4].</p><div id="part2"></div> <!-- ANCHOR 2 --><p align="justify" style="font-size:15px;"> Therefore we decided to
 
  modify Apicoli
 
  so it will synthesize
 
  butyrate in order to attract varroa.
 
</p>  
 
      </div>
 
 
      <div class="one_half">
 
     
 
<img src="https://static.igem.org/mediawiki/2015/e/e6/TLSE_Attract_fig2.png">
 
<p>Figure 2: Results of butyrate attraction
 
test with quadrants method
 
</p>
 
 
          </div>
 
  </div>
 
 
<div class="subtitle" >  
 
<h3>Butyrate attraction test</h3>
 
</div>
 
 
 
    <div class="group center"> <!-- FIRST PARAGRAPH -->
 
     
 
  <div class="one_half first">
 
 
 
<img src="https://static.igem.org/mediawiki/2015/b/b8/TLSE_Attract_fig3.png">
 
<p>Figure 3: Butyrate attraction test using
 
T tube, with varroa mite in the middle
 
 
</p>
 
  </div>
 
 
 
  <div class="one_half">
 
  <p align="justify" style="font-size:15px;">
 
To check adequacy and relevance of this study (Figure 2),
 
an experiment using a T-tube has been developed (Figure 3).
 
In the first branch, there is a cotton soaked with 50 µL of water,
 
in the second a cotton with  50 µL of butyrate at 4%, and finally the
 
last one contains the varroa.</p> <div id="part3"> <!-- ANCHOR 3 --> </div> <p align="justify" style="font-size:15px;">The butyrate being very volatile, our
 
system
 
used a pump to renew air, producing a concentration gradient.
 
</p>
 
      </div>
 
 
 
</div>
 
 
<div class="subtitle" >  
 
<h3>How to produce butyrate with <i>E.coli</i>?</h3>
 
</div>
 
 
<div class="group center">
 
     
 
  <p align="justify" style="font-size:15px;">
 
    In this project, an <i>Escherichia coli</i> strain is used for its known
 
simplicity of genetic manipulation and its adequacy with butyrate
 
synthesis. Indeed, among the five enzymes of the butyrate pathway,
 
two enzymes are naturally produced by the bacteria. The following
 
engineered butyrate pathway has been designed:
 
</p>   <br>
 
      </div>
 
 
 
 
  <div class="group center"> <!-- CENTERED FIGURE -->
 
  <img src="https://static.igem.org/mediawiki/2015/0/02/TLSE_Attract_fig4.png" />
 
</div>
 
  <div class="group center">
 
<figcaption>Figure 4: Engineered butyrate pathway</figcaption>
 
 
 
</div>
 
 
 
<div class="group center">
 
     
 
  <p align="justify" style="font-size:15px;">
 
  <br>
 
    The initial substrate is glucose which is decomposed into
 
acetyl-CoA during glycolysis. Finally, butyrate pathway
 
begin with acetyl-CoA: five genes are required with two
 
homologous and three heterologous genes.
 
</p>  
 
 
</div>
 
<br>
 
 
 
<div style="font-size:15px;">
 
<ul>
 
  <li><b><i>atoB</i></b> present in <i>E.coli</i>, coding for acetyl-CoA
 
  acetyltransferase, an acetyltransferase catalyzing the combination
 
  of two acetyl-CoA.
 
<br>
 
<div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/c/c5/TLSE_Attract_fig5.png" />
 
</div>
 
  <div class="group center">
 
<br>
 
<p class="legend">Figure 5: Reaction catalyzed by acetyl-CoA
 
acetyltransferase </p>
 
</div>
 
 
 
  </li>
 
 
 
  <li><b><i>hbd</i></b> present in <i>Clostridium acetobutylicum</i> coding for
 
  3-hydroxybutyryl-CoA dehydrogenase, an oxidoreductase catalyzing
 
  the formation of an alcohol function.
 
  <br>
 
    <div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/d/d6/TLSE_Attract_fig6.png" />
 
</div>
 
  <div class="group center">
 
<br>
 
<p class="legend">Figure 6: Reaction catalyzed by
 
3-hydroxybutyryl-CoA dehydrogenase
 
</p>
 
</div>
 
  </li>
 
 
 
  <li><b><i>crt</i></b> present in <i>C.acetobutylicum</i>
 
  coding for 3-hydroxybutyryl-CoA dehydratase,
 
  a lyase cleaving carbon-oxygen bond.
 
<br>
 
  <div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/6/67/TLSE_Attract_fig7.png" />
 
</div>
 
    <div class="group center">
 
<br>
 
<p class="legend">Figure 7:
 
Reaction catalyzed by 3-hydroxybutyryl-CoA deshydratase
 
 
</p>
 
</div>
 
  </li>
 
 
 
  <li><b><i>ccr</i></b> present in
 
  <i>Streptomyces collinus</i> coding
 
  for crotonyl-CoA reductase,
 
  an oxidoreductase acting on
 
  CH=CH double bond. This enzyme
 
  is also in <i>C.acetobutylicum</i> with
 
  <b>bcd</b> gene coding for butyryl-CoA dehydrogenase,
 
  with the disadvantage
 
  to run with Electron Transfer
 
  Flavoprotein (ETF) which complicates the reaction [6].
 
<br>
 
  <div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/5/57/TLSE_Attract_fig8.png" />
 
</div>
 
  <br>
 
  <div class="group center">
 
<br>
 
<p class="legend">Figure 8: Reaction
 
catalyzed by crotonyl-CoA reductase
 
</p>
 
</div>
 
 
 
  </li>
 
 
 
    <li><b><i>tesB</i></b> present in <i>E.coli</i>
 
coding for acyl-CoA transferase 2,
 
a thiolase which enables coenzyme A transfer.
 
  <br>
 
  <div class="group center">
 
<br>
 
  <img src="https://static.igem.org/mediawiki/2015/3/34/TLSE_Attract_fig9.png" />
 
</div>
 
<div class="group center">
 
<br>
 
<p class="legend">Figure 9: Reaction
 
catalyzed by acyl-CoA transferase 2
 
</p>
 
</div>
 
 
 
  </li>
 
 
 
</ul>
 
 
 
</div>
 
 
    <!-- ################################################################################################ -->
 
    <!-- / container body -->
 
    <div class="clear"></div>
 
 
   </main>
 
   </main>
 
</div>
 
</div>

Revision as of 14:45, 28 August 2015

iGEM Toulouse 2015

Attract


Content


About varroasis

As it has been presented, the aim of our project is to create a biological system able to produce two molecules of interest : butyric acid and formic acid.
To construct our biological system, we have to introduce a new balance between all metabolic ways already in our chassis. Indeed, we want to optimize butyrate and formate production in our bacteria with the new pathways we created for ApiColi. Below are represented all metabolic ways and metabolites known by scientists to date in Escherichia coli K12 MG1655 (most known model). It was obtained from KEGG database[1]. Over a first phase, we wanted to determine metabolic ways in which our molecules of insterest are taking part, in order to well immerse ourselves in their roles and effects.

References


  • [1] KEGG Metabolic pathways - Escherichia coli K-12 MG1655
  • [2] Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B, Ourisson G. 1989. Attraction of the parasitic mite varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245:638–639.
  • [3] Methods for attracting honey bee parasitic mites. [accessed 2015 Jul 24].
  • [4] Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294:1–8.
  • [5] Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering 10:305–311.
  • [6] Wallace KK, Bao Z-Y, Dai H, Digate R, Schuler G, Speedie MK, Reynolds KA. 1995. Purification of Crotonyl-CoA Reductase from Streptomyces collinus and Cloning, Sequencing and Expression of the Corresponding Gene in Escherichia coli. European Journal of Biochemistry 233:954–962.