Difference between revisions of "Team:Evry/Notebook"
Line 186: | Line 186: | ||
<strong>PCR on yeast genome for site directed mutagenesis :</strong> | <strong>PCR on yeast genome for site directed mutagenesis :</strong> | ||
<br> | <br> | ||
− | ADH1 amplification | + | ADH1 amplification: |
</p> | </p> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
<ul> | <ul> | ||
− | <li>primers ADH1 sub F1 + ADH1 sub R1 with 3 anealing temperatures : 57°C (B1), 60°C (B2), 63°C (B3)</li> | + | <li>- primers ADH1 sub F1 + ADH1 sub R1 with 3 anealing temperatures : 57°C (B1), 60°C (B2), 63°C (B3)</li> |
− | <li>primers ADH1 sub F2 + ADH1 sub R2 with 3 anealing temperatures : 57°C (B4), 60°C (B5), 63°C (B6)</li> | + | <li>- primers ADH1 sub F2 + ADH1 sub R2 with 3 anealing temperatures : 57°C (B4), 60°C (B5), 63°C (B6)</li> |
</ul> | </ul> | ||
</p> | </p> | ||
− | + | <p class="text-justify"> | |
− | < | + | Malpha IFN gamma amplification: |
− | Malpha IFN gamma amplification | + | |
</p> | </p> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
<ul> | <ul> | ||
− | <li>primers Mfalpha IFNgamma F1/R1 with 3 anealing temperatures : 57°C (B7), 60°C (B8), 63°C (B9)</li> | + | <li>- primers Mfalpha IFNgamma F1/R1 with 3 anealing temperatures : 57°C (B7), 60°C (B8), 63°C (B9)</li> |
− | <li>primers Mfalpha IFNgamma F1 + Mfalpha GMCSF R1 with 3 anealing temperatures :57°C (B10), 60°C (B11), 63°C (B12)<li> | + | <li>- primers Mfalpha IFNgamma F1 + Mfalpha GMCSF R1 with 3 anealing temperatures :57°C (B10), 60°C (B11), 63°C (B12)<li> |
</ul> | </ul> | ||
</p> | </p> | ||
Line 221: | Line 220: | ||
<p class="text-justify"> | <p class="text-justify"> | ||
<strong>Golden gates</strong> | <strong>Golden gates</strong> | ||
− | <br> | + | <br>2 µl T4 ligase buffer 10x |
− | + | <br>0.5 µl BSAI | |
+ | <br>0.5 µl T4 ligase | ||
+ | <br>water (qsp 20µl) | ||
</p> | </p> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
− | A1 : | + | A1 (golden gate 1): |
− | + | ||
<ul> | <ul> | ||
− | <li>New insert1 m1 Cter (AGA2P)</li> | + | <li>- New insert1 m1 Cter (AGA2P)</li> |
− | <li>New insert1 m2 Cter (-OVA1 DEC205)</li> | + | <li>- New insert1 m2 Cter (-OVA1 DEC205)</li> |
− | <li>Insert1 m2 (GAL10 GAL7 AGA1P)</li> | + | <li>- Insert1 m2 (GAL10 GAL7 AGA1P)</li> |
− | <li>Insert1 m3 extracted from yeast genome (AGA1P)</li> | + | <li>- Insert1 m3 extracted from yeast genome (AGA1P)</li> |
− | <li>pYGG1</li> | + | <li>- pYGG1</li> |
</ul> | </ul> | ||
<br> | <br> | ||
− | A2 : | + | A2 (golden gate 2): |
<ul> | <ul> | ||
− | <li>New insert1 m1 Cter (AGA2P)</li> | + | <li>- New insert1 m1 Cter (AGA2P)</li> |
− | <li>Insert1 m2 (GAL10 GAL7 AGA1P)</li> | + | <li>- Insert1 m2 (GAL10 GAL7 AGA1P)</li> |
− | <li>Insert1 m3 extracted from yeast genome (AGA1P)</li> | + | <li>- Insert1 m3 extracted from yeast genome (AGA1P)</li> |
− | <li>pYGG1</li> | + | <li>- pYGG1</li> |
</ul> | </ul> | ||
<br> | <br> | ||
− | A3 (golden 3) : | + | A3 (golden gate 3) : |
<ul> | <ul> | ||
− | <li>insert3 (OVA2)</li> | + | <li>- insert3 (OVA2)</li> |
− | <li>pYGG2</li> | + | <li>- pYGG2</li> |
</ul> | </ul> | ||
</p> | </p> | ||
Line 271: | Line 271: | ||
<h4>Sunday, 21<sup>th</sup>June 2015</h4> | <h4>Sunday, 21<sup>th</sup>June 2015</h4> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
− | <strong>PCR colony | + | <strong>PCR colony (again)</strong> |
+ | <p class="text-justify"><span class="text-primary"> PCR Colony</span> | ||
<br> | <br> | ||
1 µl of resuspended colony in 20 µl LB | 1 µl of resuspended colony in 20 µl LB | ||
Line 283: | Line 284: | ||
10 µl PCR mix (Dreamtaq) | 10 µl PCR mix (Dreamtaq) | ||
<br> | <br> | ||
− | PCR Program | + | <p class="text-justify"><span class="text-primary">Q5 PCR Program</span> |
− | < | + | <ul> |
− | Step1 95°C - 5 min | + | <li>Step1 95°C - 5 min</li> |
− | < | + | <li>Step 2 95°C – 30 s</li> |
− | Step 2 95°C – 30 s | + | <li>Step 3 50°C – 30s</li> |
− | < | + | <li>Step 4 72°C – 2 min (repeat step 2-4, 45 times)</li> |
− | Step 3 50°C – 30s | + | <li>Step 5 72°C – 10 min</li> |
− | < | + | <li>Step 6 4°C – Pause</li> |
− | Step 4 72°C – 2 min (repeat step 2-4, 45 times) | + | |
− | < | + | |
− | Step 5 72°C – 10 min | + | |
− | < | + | |
− | Step 6 4°C – Pause | + | |
<br> | <br> | ||
<strong>PCR colony products gel electrophoresis (1% agarose)</strong> | <strong>PCR colony products gel electrophoresis (1% agarose)</strong> |
Revision as of 21:41, 3 September 2015
Notebook
Here is our lab notebook. Follow all the wet lab experiments we did, day by day.
-
Yeast surface-display
-
May
-
May
-
May
-
May
-
May
-
May
Friday, 12th June 2015
Extraction of AgA1P from yeast genome with BSAI
AGA1P was extracted with BSAI overhangs for subsequent cloning from W303 and BY4000, according to Looke et al., PMC 2011.
Protocol:
- 1) Resuspend one yeast colony in 100 µl of 200 mM LiAc, 1% SDS solution and incubate at 70°C
- 2) Add 300 µl of 36% ethanol and vortex
- 3) Spin down DNA at 15 000 g for 3 minute
- 4) Wash pellet with 70% ethanol
- 5) Disolve pellet in 100 µl of water and spin down debris at 15 000 g for 15 seconds
PCR of AGA1P with primers AGA1P R1/F1 with Q5 polymerase using a gradient (57/60/63°C)
Q5 PCR Program
- step 1 : 98°C – 30 seconds
- step 2 : 98°C – 10 seconds
- step 3 : 57, 60 or 63°C
- step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
- step 5 : 16°C - Hold
Monday, 14th June 2015
PCR on yeast genome for site directed mutagenesis :
ADH1 amplification:
- - primers ADH1 sub F1 + ADH1 sub R1 with 3 anealing temperatures : 57°C (B1), 60°C (B2), 63°C (B3)
- - primers ADH1 sub F2 + ADH1 sub R2 with 3 anealing temperatures : 57°C (B4), 60°C (B5), 63°C (B6)
Malpha IFN gamma amplification:
- - primers Mfalpha IFNgamma F1/R1 with 3 anealing temperatures : 57°C (B7), 60°C (B8), 63°C (B9)
- - primers Mfalpha IFNgamma F1 + Mfalpha GMCSF R1 with 3 anealing temperatures :57°C (B10), 60°C (B11), 63°C (B12)
Friday, 19th June 2015
Golden gates
2 µl T4 ligase buffer 10x
0.5 µl BSAI
0.5 µl T4 ligase
water (qsp 20µl)
A1 (golden gate 1):
- - New insert1 m1 Cter (AGA2P)
- - New insert1 m2 Cter (-OVA1 DEC205)
- - Insert1 m2 (GAL10 GAL7 AGA1P)
- - Insert1 m3 extracted from yeast genome (AGA1P)
- - pYGG1
A2 (golden gate 2):
- - New insert1 m1 Cter (AGA2P)
- - Insert1 m2 (GAL10 GAL7 AGA1P)
- - Insert1 m3 extracted from yeast genome (AGA1P)
- - pYGG1
A3 (golden gate 3) :
- - insert3 (OVA2)
- - pYGG2
Saturday, 20thJune 2015
PCR colony using primers URA F1 and URA R5 2.0 on A1, A2 and A3
PCR colony products gel electrophoresis (1% agarose)
Results: Clones from golden 3 (A3, see 19/06) present the right size. Clones from golden 1 and 2 (A1 and A2, see 19/06) are negative. It seems there was no amplification.
Miniculture (40)
Sunday, 21thJune 2015
PCR colony (again)
PCR Colony
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)
Q5 PCR Program
- Step1 95°C - 5 min
- Step 2 95°C – 30 s
- Step 3 50°C – 30s
- Step 4 72°C – 2 min (repeat step 2-4, 45 times)
- Step 5 72°C – 10 min
- Step 6 4°C – Pause
- ADH1 Malpha IFNgamma construction (G1): C1 + B8 + A6 + pYGG1
- ADH1 Malpha GMCSF construction (G2): C1 + B10 + A7 + pYGG1
- ADH2 Malpha IFNgamma (G3): C2 + B8 + A6 + pYGG1
- ADH2 … GMCSF construction (G4): C2 + B11 + A7 + pYGG1
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- G1 mini = 270.5 ng/µl (260/280 = 1.81 ; 260/230 = 1.72)
- G2 mini = 287.4 ng/µl (260/280 = 1.84 ; 260/230 = 1.63)
- G3 mini = 146.4 ng/µl (260/280 = 1.81 ; 260/230 = 1.42)
- G4 mini = 264.3 ng/µl (260/280 = 1.79 ; 260/230 = 1.80)
- G5 mini = 164.9 ng/µl (260/280 = 1.82 ; 260/230 = 1.49)
- G6 mini = 128.1 ng/µl (260/280 = 1.84 ; 260/230 = 1.56)
- G7 mini = 587.4 ng/µl (260/280 = 1.67 ; 260/230 = 0.63)
- G8 mini = 160.2 ng/µl (260/280 = 1.81 ; 260/230 = 1.91)
- URA F1/SR1 lig IFN gamma
- S2 lig IFN gamma/SR2 lig IFN gamma
- URA F1/SR1 lig IFN gamma
- New insert1 m1 Cter (AGA2P) = 10 ng/µl
- New insert1 m2 Cter PCR1 (-OVA1 DEC205) = 77 ng/µl
- pYGG1 (P11) = 107.6 ng/µl
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Mini P1 = 449.9 µl (260/230= 1.82 ; 260/280= 1.89) (from D13 and D23, see 09/07)
- Mini P2 = 414.2 µl (260/230= 1.83 ; 260/280= 1.94) (from D33 and D43, see 09/07)
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- AGA2P OVA1 DEC205 1 (SD1) = 449.9 ng/µl
- AGA2P OVA1 DEC205 2 (SD2) = 414.2 ng/µl
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Mata IFN gamma pYGG1 mini (A4 mini) = 256 ng/µl (260/230= 1.23 ; 260/280= 1.73)
- Mata IFN gamma pYGG1 mini (C6 mini) = 66.8 ng/µl (260/230= 1.39 ; 260/280= 1.85)
- Mata IFN gamma pYGG1 mini (D7 mini) = 71.4 ng/µl (260/230= 1.67 ; 260/280= 1.88)
- amplification of AGA2P with primers containing DEC205 overhang
- amplification of DEC205 with primers containing AGA2P overhang
- AGA2P = 72 .3 ng/µl (260/280 = 1.79 ; 260/230 = 0.76)
- DEC205 = 104.2 ng/µl (260/280 = 1.79 ; 260/230 = 0.42)
- pYGG1 + AGA2P + DEC205
- PYGG1 + AGA2P + OVA1 (Gblock)
- pYGG1 + ADH1 (miniprep « ADH1 ») + Malpha GMCSF (B10, see 22/06/15)
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Golden 1 : pYGG1 + AGA2P + DEC205
- Golden 2 : PYGG1 + AGA2P + OVA1 (Gblock) (dec 205 v2)
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- AGA2P OVA1 DEC205 (SD1)
- AGA1
- AGA2P OVA1 DEC205 (SD2)
- From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
- Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
- Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
- Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
- Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
- Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
- Add the following to the samples in order:
- 240 µl PEG 50%
- 36 µl 1 M LiAc
- 25 µl Salmon sperm DNA (2 mg/ml)
- 50 µl water and plasmid (10 ug)
- Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
- Incubate at 30°C for 30 min
- Heat shock in a water bath at 42°C for 15 minute
- Ice for 2 minutes
- Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
- Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
- Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media
- Incubate at 30°C for 3 days
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- T4: ADH1 Ma IFNg (pYGG1)>li
- From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
- Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
- Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
- Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
- Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
- Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
- Add the following to the samples in order:
- 240 µl PEG 50%
- 36 µl 1 M LiAc
- 25 µl Salmon sperm DNA (2 mg/ml)
- 50 µl water and plasmid (10 ug)
- Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
- Incubate at 30°C for 30 min
- Heat shock in a water bath at 42°C for 15 minute
- Ice for 2 minutes
- Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
- Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
- Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
- pYGG1 => URA-
- pYGG2 => TRP-
- pYGG1 + pYGG2 => TRP- URA-
- Incubate at 30°C for 3 days
- T1: OVA2 (pYGG2)
- T2: AGA2P OVA1 (pYGG1) + AGA1P (pYGG2)
- T3: AGA2P OVA1 DEC205 (pYGG1) + AGA1P (pYGG2)
- T5: AGA2P/GFP (pYGG1) + AGA1P (pYGG2)
- T6: AGA2P GFP (pYGG1)
- T7: AGA2P OVA DEC205 (pYGG1)
- T8: AGA2P OVA1 (pYGG1)
- From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
- Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
- Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
- Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
- Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
- Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
- Add the following to the samples in order:
- 240 µl PEG 50%
- 36 µl 1 M LiAc
- 25 µl Salmon sperm DNA (2 mg/ml)
- 50 µl water and plasmid (10 ug)
- Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
- Incubate at 30°C for 30 min
- Heat shock in a water bath at 42°C for 15 minute
- Ice for 2 minutes
- Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
- Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
- Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
- pYGG1 => URA-
- pYGG2 => TRP-
- pYGG1 + pYGG2 => TRP- URA-
- Incubate at 30°C for 3 days
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
- Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
- Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
- Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
- Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
- Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
- Add the following to the samples in order:
- 240 µl PEG 50%
- 36 µl 1 M LiAc
- 25 µl Salmon sperm DNA (2 mg/ml)
- 50 µl water and plasmid (10 ug)
- Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
- Incubate at 30°C for 30 min
- Heat shock in a water bath at 42°C for 15 minute
- Ice for 2 minutes
- Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
- Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
- Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
- pYGG1 => URA-
- pYGG2 => TRP-
- pYGG1 + pYGG2 => TRP- URA-
- Incubate at 30°C for 3 days
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- Discard media after centrifugation at 3000 rpm for 4 minutes
- Resuspend yeast in 10 mL induction media :
- galactose 1X without tryptophane for T1
- galactose 1X without tryptophane and uracile for T2 and T3
- Put into incubator and agitation at 25 °C for 48 hours
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- AGA2P = 72 .3 ng/µl (260/280 = 1.79 ; 260/230 = 0.76)
- Resuspend colony in 10 µl water
- Microwave 8 minutes 5 µl of resuspended colony (900W)
- Add 10 µl of mix dreamtaq
- Add 2.5 µl primer (URA R5 2.0/ URA F1)
- IFN 1 = 343.5 ng/µl
- IFN 4 = 290 ng/µl
- IFN 6 = 265 ng/µl
- IFN 7 = 377 ng/µl
- Resuspend colony in 10 µl water
- Microwave 8 minutes 5 µl of resuspended colony (900W)
- Add 10 µl of mix dreamtaq
- Add 2.5 µl primer (URA R5 2.0/ URA F1)
- P005 FN IFNgamma/RV Mat IFNgamma
- FW Mat IFNgamma/P006 RV IFNgamma
- P007 FW Mat alpha GMCSF/ RV Mat IFN gamma
- ADH1 Mat alpha IFN gamma pYGG1 (sample « IFNgamma)
- pYGG1
- water
- AGA2P OVA1 DEC205 pYGG1 (sample « SD »)
- AGA2P OVA1 pYGG1 (sample « DEC -»)
- OVA2 pYGG2 (sample « OVA2 »)
- pYGG2
- water
- P015 FW IFN gamma/P016 RV IFNgamma
- P015 FW IFN gamma / P016 RV IFN gamma
- pYGG1 = 68 ng/µL
- pYGG2 = 127 ng/µL
- AGA1P (pYGG2) = 32 ng/µL
- BB Mata-IFNg = 50 ng/µL
- BB IFNg = 35 ng/µL
- Biosensor 3 = 46 ng/µL
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
- Put plates in growth incubators at 37°C for 24 hours
- BB IFNg
- BB Mata-IFNg
- BB DEC 205
- BB OVA1
- BB OVA2
- pSB1C3
- BB IFNg D = 13 ng/µL
- BB Mata-IFNg D = 10 ng/µL
- BB DEC 205 D = 15.4 ng/µL
- BB OVA1 D = 9 ng/µL
- BB OVA2 D = 14 ng/µL
- pSB1C3 D = 7.4 ng/µL
- Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
- Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
- Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
- Plate 50 µl and 150 µl to plates containing LB agar media with chloramphenicol
- Put plates in growth incubators at 37°C for 24 hours
PCR colony products gel electrophoresis (1% agarose)
Results: We got clones with expected sizes.
Monday, 22ndJune 2015
PCR clean up and nanodrop :
A1 = 209.1 ng/µl (insert1 m3)
A2 = 56.1 ng/µl (AGA2P)
A6 = 114.3 ng/µl (IFN gamma)
A7 = 93.7 ng/µl (GMCSF)
B8 = 114 ng/µl (Malpha IFNgamma)
B10 = 134.2 ng/µl (Malpha GMCSF)
B11 = 163.9 ng/µl (Malpha GMCSF)
C1 = 180.7 ng/µl (ADH1)
C2 = 302.9 ng/µl (ADH1)
G2/G2/G3/G4 Golden gates
2 µl T4 ligase buffer 10x + 0.5 µl BSAI + 0.5 T4 ligase + water (qsp 20µl)
E. coli transformation
Tuesday, 23rd June 2015
G2/G2/G3/G4 Colony PCR and Miniculture
Wednesday, 24th June 2015
G2/G2/G3/G4 Library from miniculture :
750 µl of G1 to G8 were mixed with 750 µl of glycerol 50% and put in the freezer at -80°C.
G2/G2/G3/G4 Minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel):
G1
G2
G3 (ADH2 Malpha IFNgamma)
G4
Thursday, 25th June 2015
G samples were sent to sequencing using following primers :
Sequencing mixes :
G4 : 4 µl DNA + 1.25 µl/primer + qsq water
G6 : 6 µl DNA + 1.25 µl/primer + qsq water
Friday, 3rd July 2015
AGA2P -OVA1 DEC205 (pYYG1) construction : Nanodrop results
AGA2P OVA1 DEC205 (pYGG1) new golden gate
Mix (20µl):
15.5 µl H20
2 µl T4 ligase buffer 10x
0.425 µl New insert1 m1 Cter (AGA2P)
0.194 µl New insert1 m2 Cter PCR1 (-OVA1 DEC205)
1 µl pYGG1
0.5 µl BSA I
0.5 µl T4 ligase
AGA2P OVA1 DEC205 (pYGG1) E. coli transformation
Sunday, 5th July 2015
AGA2P OVA1 DEC205 (pYGG1) construction
PCR colony using primers URA F1 and URA R5 2.0
Tuesday, 7th July 2015
AGA2P OVA1 DEC205 (pYGG1) construction
Miniculture
Wednesday, 8th July 2015
AGA2P OVA1 DEC205 (pYGG1) construction: PCR colony and gel electrophoresis
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30 s
Step 4 72°C – 2 min
Step 5 72°C – 10 min
Step 6 4°C – Pause
PCR colony products gel electrophoresis (1% agarose)
Thursday, 9th July 2015
Miniculture of transformed AGA2P OVA1 DEC205 (pYGG1) E.coli
19 µl colony resuspended Luria Bertoni media in 4 mL of Luria Bertoni media complemented with 4 µl of ampicilin (100 mg/µl) and put to incubate at 37°C overnight.
Samples names : D13/ D23/ D33 / D43
Friday, 10th July 2015
Samples of AGA2P OVA1 DEC205 (pYGG1) construction were minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :
Monday, 13th July 2015
Mat alpha IFN gamma) ADH1 pYGG1 construction: Golden gate
Mix (20µl)
11.35 µl H20
2 µl T4 ligase buffer 10x
0.177 µl ADH1
4.473 µl (Mat alpha IFN gamma) = Gblock
1 µl pYGG1
0.5 µl BSA I
0.5 µl T4 ligase
Program :
Mat alpha IFN gamma ADH1 (pYGG1) E. coli transformation
Monday, 13th July 2015
Samples of AGA2P OVA1 DEC205 (pYGG1) construction were minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :
Samples of AGA2P OVA1 DEC205 (pYGG1) construction, Mini P1 and Mini P2 were sent to sequencing
Wednesday, 15th July 2015
Mat alpha IFN gamma ADH1 (pYGG1) construction : PCR colony
Mix (20 µl)
10 µl PCR mix (DreamTaq)
1 µl URA F1
1 µl URA R5 2.0
1 µl colony resuspended in Luria Bertoni media
7 µl water
PCR colony program :
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30s
Step 4 72°C – 2 min (Repeat step 2-4 35 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause
Thursday, 16th July 2015
Mat alpha IFN gamma ADH1 (pYGG1) PCR colony products gel electrophoresis (1% agarose)
Only clones A4, C6 and D7 corresponded to the size expected for (Mat alpha IFN gamma) ADH1 : 2200 pb.
Miniculture
19 µl colony resuspended Luria Bertoni media in 4 mL of Luria Bertoni media complemented with 4 µl of ampicilin (100 mg/µl) and put to incubate at 37°C overnight.
Friday, 17th July 2015
OVA2 (pYGG2): golden gate
Mix (20 µl)
2 µl T4 ligase
0.5 µl BSA I
0.5 T4 µl DNA ligase
0.801 µl OVA2 (12,6 ng/µl) (Gblock)
0.714 µl pYGG2 (107.6 ng/µl)
15.4 µl water
Program:
Monday, 20th July 2015
OVA2 (pYGG2) E. coli transformation
Tuesday, 21st July 2015
OVA2 (pYGG2) E. coli transformation results
Previously (see 2015-07-21) plates were put overnight into incubators at 37°C.
There is no colonies on the plates, either because the E. coli mix died before being plated or because the golden gate failed in some ways. The latter hypothesis is unliky as we woµld have red negative colonies onto the plate.
=> It turns out we did not use the right plasmid. We shoµld have used pYGG1
Thursday, 23rd July 2015
OVA2 pYGG1 golden gate
Mix (20 µl)
2 µl T4 ligase
0.5 µl BSA I
0.5 T4 µl DNA ligase
1 µl OVA2 (12,6 ng/µl) (Gblock)
1 µl pYGG1 (107.6 ng/µl)
15 µl water
Program :
OVA2 pYGG1 E.Coli transformation
AGA2P OVA1 DEC205 minipreped samples were sent to sequencing using two sets of primers :
Seq.ID 26EB08 => SD1.1 (primers : URA F1 / URA F1 reverse seq) (The sequence length is 0 nt)
Seq.ID 26EB09 => SD1.2 (primers : URA R5 2.0 forward seq / URA R5 2.0) (The sequence length is 0 nt)
Seq.ID 26EB10 => SD1.1’ (replicate of SD1.1) (results : The sequence length is 23 nt)
Seq.ID 26EB11 => SD1.2’ (replicate of SD1.2) (results : The sequence length is 41 nt)
Seq.ID 26EB12 => SD2.1 (same as SD1.1) (results : The sequence length is 22 nt)
Seq.ID 26EB13 => SD2.2 (same as SD1.2) (results : The sequence length is 737 nt)
Seq.ID 26EB14 => SD2.1’ (replicate of SD2.1) (results : The sequence length is 0 nt)
Seq.ID 26EB15 => SD2.2’ (Replicate of SD2.2) (Results : The sequence length is 20 nt)
Friday, 23rd July 2015
Mat alpha IFN gamma ADH1 (pYGG1) : Sample was minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) from the miniculture (see 15-07-15) and nanodroped :
Mat alpha IFN gamma ADH1 (pYGG1) sequencing using only one primer set (URA F1/ URA R5 2.0):
Seq.ID 26EB02 => A4 mini .1 (results : The sequence length is 1110 nt)
Seq.ID 26EB03 => A4 mini .2 (replicate) (results : The sequence length is 1076 nt)
Seq.ID 26EB04 => C6 mini .1 (results : The sequence length is 986 nt)
Seq.ID 26EB05 => C6 mini .2 (replicate) (results : The sequence length is 978 nt)
Seq.ID 26EB06 => D7 mini .1 (results : The sequence length is 23 nt)
Seq.ID 26EB07 => D7 mini .2 (replicate) (results : The sequence length is 38 nt)
Friday, 24th July 2015
OVA2 (pYGG1) E.coli transformation results
The 2 plates put into the incubators showed 4 colonies at most.
We decided to wait for the plates to develop a bit more and to put back the miniculture and colony PCR to Monday 27th 2015. Meanwhile, after a few hours into the incubator, plates were wrapped with parafilm and put into the fridge at 4°C.
Monday, 27th July 2015
OVA2 (pYGG1): PCR colony and gel electrophoresis
Previously (see 2015-07-23), we transformed E. coli with our golden gate products and plated the transformed E. coli onto 2 plates.
We took 8 positive colonies from the plates and resuspend them separately into 20 µl of Luria Bertoni media.
PCR colony mix
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30s
Step 4 72°C – 2 min (Repeat step 2-4 35 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause
PCR colony products gel electrophoresis (1% agarose)
PCR from New insert1 m1 Cter (PCR001)
Mix (50µl)
2,5 µl FWD AGA2P
2,5 µl RV AGA2P
1 µl New insert1 m1 Cter
19 µl water
25 µl PCR mix (Q5)
PCR program
Step 1 95°C
Step 2 95°C
Step 3 60°C
Step 4 72°C (Repeat step 2-4 31 times)
Step 5 72°C
Step 6 12°C
PCR from New insert1 m2 Cter (PCR002)
Mix (50µl)
2,5 µl FWD DEC205
2,5 µl RV DEC205
1 µl New insert1 m2 Cter
19 µl water
25 µl PCR mix (Q5)
PCR program
Step 1 95°C
Step 2 95°C
Step 3 60°C
Step 4 72°C (Repeat step 2-4 31 times)
Step 5 72°C
Step 6 12°C
PCR001 and PCR002 gel electrophoresis :
PCR clean up and nanodrop of AGA2P and DEC205 products :
Golden gates of :
Program :
E. coli transformation with golden gate products
Tuesday, 28th July 2015
We sent to sequencing Mat alpha IFN gamma ADH1 (pYGG1) with new primers since previous sequencing results were unconclusive.
Furthermore, in order to check the presence of our desired fragments, we also performed a multiple PCR on A4, C6 and D7 samples.
A4, C6 and D7 samples sequencing :
Seq.ID 26EB16 - A41 (URA F1/SR1 lig IFNg)
Seq.ID 26EB17 - A41.2 (replicate of A41)
Seq.ID 26EB18 - A42 (S2 lig IFNg/SR2 lig IFNg)
Seq.ID 26EB19 - A42.2 (replicate of A42)
Seq.ID 26EB20 - C61 (URA F1/SR1 lig IFNg)
Seq.ID 26EB21 - C61.2
Seq.ID 26EB22 - C62 (S2 lig IFNg/SR2 lig IFNg)
Seq.ID 26EB23 - C62.2
Seq.ID 26EB24 - D71 (URA F1/SR1 lig IFNg)
Seq.ID 26EB25 - D71.2
Seq.ID 26EB26 - D72 (S2 lig IFNg/SR2 lig IFNg)
Seq.ID 26EB27 - D72.2
Multiple PCR using URA F1/SR1 lig IFNg and S2 lig IFNg/SR2 lig IFNg primers :
PCR mix (20 µl)
1 µl of DNA
1 µl forward primer
1 µl reverse primer
7 µl water
10 µl PCR mix (Dreamtaq)
ADH1 (miniprep « ADH1 ») Mat alpha GMCSF (B10, see 22/06/15) (pYGG1) golden gate
E. coli transformation with golden gate products
Tuesday, 28th July 2015
We sent to sequencing AGA2P OVA1 DEC205 (pYGG2) with new primers since previous sequencing results were unconclusive.
Furthermore, in order to check the presence of our desired fragments, we also performed a multiple PCR on SD1 and SD2 samples.
SD1 and SD2 samples sequencing:
Sample SD2
Seq.ID 26EB28 (URA F1/URA F1 Rev Seq V2)
Seq.ID 26EB29 (URA R5 2.0 Fw seq V2/URA R5 2.0)
Seq.ID 26EB30 (URA F1/ URA R1)
Seq.ID 26EB31 (URA F2/URA R5 2.0)
Seq.ID 26EB32 (URA F1/URA F1 Rev Seq V2)
Seq.ID 26EB33 (URA R5 2.0 Fw seq V2/URA R5 2.0)
Seq.ID 26EB34 (URA F1/ URA R1)
Seq.ID 26EB35 (URA F2/URA R5 2.0)
Sample SD1
Seq.ID 26EB36 (URA F1/URA F1 Rev Seq V2)
Seq.ID 26EB37 (URA R5 2.0 Fw seq V2/URA R5 2.0)
Seq.ID 26EB38 (URA F1/ URA R1)
Seq.ID 26EB39 (URA F2/URA R5 2.0)
Seq.ID 26EB40 (URA F1/URA F1 Rev Seq V2)
Seq.ID 26EB41 (URA R5 2.0 Fw seq V2/URA R5 2.0)
Seq.ID 26EB42 (URA F1/ URA R1)
Seq.ID 26EB43 (URA F2/URA R5 2.0)
Multiple PCR
PCR mix (20 µl)
1 µl of DNA
1 µl forward primer
1 µl reverse primer
7 µl water
10 µl PCR mix (Dreamtaq)
Golden gates of :
E. coli transformation with golden gate products
Wednesday, 29th July 2015
Results of E.coli transformed with AGA2P OVA1 (Gblock "dEC205 - v2") (pYGG1) and AGA2P DEC205 (pYGG1)
We got a few colonies for AGA2P OVA1 but none for AGA2P DEC2065 so we performed a PCR colony for AFGA2P OVA1 and a second transformation for AGA2P DEC205 with remaining golden gate (see 28/07).
AGA2P OVA1: PCR colony
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30 s
Step 4 72°C – 2 min (repeat step 2-4 30 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause
AGA2P OVA1: PCR colony gel electrophoresis (1% agarose)
Yeast transformation with:
Protocol:
Wednesday, 29th July 2015
Results of E.coli transformed with ADH1 (miniprep « ADH1 ») + Malpha GMCSF (B10, see 22/06/15) (pYGG1)
We got no colonies, so we performed a second E.coli transformation with remaining golden gate (see 28/07).
E. coli transformation with golden gate products
AGA1P sequencing
Friday, 31st July 2015
Since on the 07/30, we coµld not perform all yeast transformations (transformation 5 or T5), due to lack of samples for AGA1P, we transformed all the constructions into yeast again.
The yeasts that were transformed the day before are already growing except for the plate CoT2 that did not contain enough substrate for the yeast to feed off.
Yeast transformation:
Protocol:
Friday, 31st July 2015
Since on the 07/30, we coµld not perform all yeast transformations (transformation 5 or T5), due to lack of samples for AGA1P, we transformed all the constructions into yeast again.
The yeasts that were transformed the day before are already growing except for the plate CoT2 that did not contain enough substrate for the yeast to feed off.
AGA1P minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :
AGA1P.1 = 44.2 ng/µl
Yeast transformations:
Protocol:
Monday, 3rd August 2015
Colony PCR of yeast transformants with following primers :
AGA2P/DEC205
P1-4 => URA F1/ URA R1
P5-8 => URA R2/ URA R5 2.0
SD1
R1-4 => URA F1/URA R5 2.0
R5-6 => URA F1/URA R1
R7-8 => URA F2/URA R5 2.0
SD2
T1-4 => URA F1/ URA R5 2.0
T5-6 => URA F1/URA R1
T7-8 => URA F2/URA R5 2.0
Library
"130" P2 (AGA2P/DEC205)
"131" P4 (AGA2P/DEC205)
"132" R4 (SD1)
"133" R5 (SD1)
"134" R6 (SD1)
"135" T1 (SD2)
"136" T3 (SD2)
"137" T4 (SD2)
"138" T5 (SD2)
Monday, 3rd August 2015
Colony PCR of yeast transformants with following primers :
GMCSF
Q1-8 => URA F1/URA R5 2.0
IFNgamma
S1-4 => URA F1/SR1 lig IFN gamma
S5-8 => S2 lig IFN gamma/SR2 lig IFN gamma
Tuesday, 4th August 2015
Colony PCR of transformed E. coli with ADH1 Mata GMCSF and ADH1 Mata IFNg
Colony PCR mix :
10 µl dreamtaq master mix
7 µl water
1 µl reverse primer
1 µl forward primer
Colony PCR gel electrophoresis (1% agarose)
Colony PCR yeast gel electrophoresis (1% agarose)
Wednesday, 5th August 2015
Gel electrophoresis of ADH1 Mata GMCSF and ADH1 Mata IFNg
Colony PCR2 of ADH1 Mata GMCSF and ADH1 Mata IFNg with following primers :
Colony PCR mix (20 µl):
3.5 µl water
0.5 µl primer forward
0.5 µl primer reverse
0.5 µl of e.coli resuspended in 10 µl water
PCR program :
step 1 : 95°C
step 2 : 95°C
step 3 : 72°C
step 4 : 60°C (URA F1/ URA R5 2.0) or 53°C (others)
step 5 : 72°C
Miniculture of ADH1 Mata GMCSF and ADH1 Mata IFNg
The remaining resusepended e.coli was put into 4 mL of Luria Bertoni media containing with 4 µl ampicilin.
Colony PCR of T4 (see 31/07)
Colony PCR mix (20 µl):
10 µl PCR mix (Dreamtaq)
qsq µl water
2.5 µl primer forward
2.5µl primer reverse
yeast resuspended in 10 µl water (separated in two parts table )
PCR program :
step 1 : 95°C – 5 min
step 2 : 95°C – 30 seconds
step 3 : 60°C – 30 seconds
step 4 : 72°C – 4 min (repeat step 2-4 45 times)
step 5 : 4°C – Pause
Golden gate of ADH1 mat alpha GMCSF (pYGG1) construction :
Mix (20 µl) :
0.849 µl ADH1
3.243 µl Mat alpha GMCSF
3.1 µl PYGG1
2 µl T4 ligase buffer
0.5 µl T4 ligase
0.5 µl BSA I
Program :
E. coli transformation with golden gate ADH1 mat alpha GMCSF (pYGG1)
Wednesday, 5th August 2015
Colony PCR of T1/2/3/5/6/7/8 (see 31/07)
Colony PCR mix (20 µl):
10 µl PCR mix (Dreamtaq)
qsq µl water
2.5 µl primer forward
2.5µl primer reverse
yeast resuspended in 10 µl water (separated in two parts table )
PCR program :
step 1 : 95°C – 5 min
step 2 : 95°C – 30 seconds
step 3 : 60°C – 30 seconds
step 4 : 72°C – 4 min (repeat step 2-4 45 times)
step 5 : 4°C – Pause
Thursday, 6th August 2015
Yeast transformation without OVA1
Protocol:
Friday, 7th August 2015
PCR colony yeast and E. coli
Saturday, 8th August 2015
GMCSF E.coli PCR colony
IFNg E.coli PCR colony
Monday, 10th August 2015
Golden gate ADH1 matalpha GMCSF (pYGG1)
Mix (20µl):
Mat alpha GMCSF (gblock)
pYGG1
ADH1
2 µl DNA T4 ligase buffer
0.5 µl DNA ligase
0.5 µl BSA I
qsp water
Program :
Tuesday, 11th August 2015
E. coli transformation of ADH1 Mat alpha GMCSF (pYGG1) (again)
Golden gate ADH1 mat alpha IFNgamma (pYGG1)
Mix :
0.033 (x 3) µl Sample « B8 » (M :atalpha IFNgamma) (114 ng/µl)
0.058 (x 3) µl Sample « A6 » (IFNgamma) (114 ng/µl)
0.274 µl Sample « ADH1 » (75 ng/µl)
0.929 µl pYGG1
2 µl DNA T4 ligase buffer
0.5 µl DNA ligase
0.5 µl BSA I
Tuesday, 11th August 2015
Culture of T1, T2 T3 and WT yeast from plates in glucose (without induction)
Wednesday, 12th August 2015
Culture induction of T1/T2/T3 and WT yeast
Wednesday, 12th August 2015
E. coli transformation of ADH1 Mat alpha IFNgamma (pYGG1)
Colony PCR of pYGG1 ADH1 matalpha GMCSF with following set of primers :
- URA F1 / URA R5 2.0
- URA F1 / SR1 lig IFNgamma
- S2 lig IFNgamma / SR2 lig GMCSF
Thursday, 13th August 2015
Colony PCR of ADH1 Mat alpha IFN gamma (pYGG1) with folllowing set of primers :
- URA F1 / URA R5 2.0
- URA F1 / SR1 lig IFNgamma
- S2 lig IFNgamma / SR2 lig IFNgamma
Mix (10 µl) :
5 µl dreamtaq master mix
0.5 µl colony resuspended in 19 µl Luria Bertoni
0.5 µl reverse primer
0.5 µl forward primer
3.5 µl water
Miniprep of ADH1 Mat alpha GMCSF (pYGG1) using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :
Monday, 17th August 2015
Yeast Colony PCR on T1, T2 and T3 (induced/non induced)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 57/60/63 °C – 30s
Step 4 72°C – 2 min (repeat step 2-4, 41 cycles)
Step 5 72°C – 10 min
Step 6 4°C – Pause
T1/2/3 Colony PCR gel electrophoresis (1% agarose)
Expected sizes :
T1 => OVA2 (290 bp)
T2 => AGA1P (2225 bp) & AGA2P OVA1 (461 bp)
T3 => AGA1P (2285 bp) & AGA2P OVA1 DEC205 (1381 bp)
Miniprep of ADH1 Mat alpha IFN gamma using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :
Tuesday, 18th August 2015
We decided to remake the yeast colony PCR from 17/08 using same protocol to check our results a second time.
We tested plates of the same construction, T1, T2 and T3, made by different experimentators. For T1, we tested 3 different plates, each at 2 different temperatures : 53 and 60°C.
We also tested T3 with 3 different sets of primers (see gel picture below).
Yeast Colony PCR on T1, T2 and T3 (induced/non induced)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 57/60/63 °C – 30s
Step 4 72°C – 2 min (repeat step 2-4, 41 cycles)
Step 5 72°C – 10 min
Step 6 4°C – Pause
T1/2/3 Colony PCR gel electrophoresis (1% agarose)
primers used :
T1/T2/WT : URA F1/R5 2.0
T3.1 : URA R5 2.0/F1
T3.2 : URA F1/R1
T3.3 : URA F2/ R5.2.0
Wednesday, 19th August 2015
We started taking care of our biobricks ! We planned to deposite four biobricks : DEC205, OVA2, IFNgamma and Mat alpha IFN gamma. For OVA2 and DEC205, we just amplified the fragments with primers designed to make the fragment fit into the pSB1C3 plasmid. For IFN gamma and Mat alpha IFN gamma, as IFN gamma presented a restriction site, we proceeded to do a site directed mutagenenis to remove it. Mutagenesis of IFNgamma and Mat alpha IFN gamma: We performed two consecutive PCR, the first one (PCR1) to introduce a mutation at the desired site and the second one (PCR2) to amplify the entire fragment (see 21/08). In between, PCR clean-ups were done using Nucleospin Gel and PCR Clean-up (LOT :1504/001).
IFNgamma
PCR1 primers:
PCR1 primers :
Mix (50 µl) :
25 µl Q5 master mix
2.5 µl reverse primer
2.5 µl forward primer
1 µl DNA
19 µl water
Q5 PCR Program
step 1 : 98°C – 30 seconds
step 2 : 98°C – 10 seconds
step 3 : 57, 60 or 63°C
step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
step 5 : 16°C - Hold
Thursday, 20th August 2015
Mutagenesis of IFNgamma and Mat alpha IFN gamma: Gel electrophoresis (2% agarose) for the PCR1 products
Friday, 21th August 2015
We checked by digestion the following constructions :
Mix :
2 µl NEB 2.1 Buffer
1 µl Hind III
2 µl DNA
15 µl water
We let the mix, 1 hour at 37°C and 500 rpm
Digestion gel electrophoresis (agarose 1%)
Friday, 21th August 2015
We checked by digestion the following constructions :
Mix :
2 µl NEB 2.1 Buffer
1 µl Hind III
2 µl DNA
15 µl water
We let the mix, 1 hour at 37°C and 500 rpm
Digestion gel electrophoresis (agarose 1%)
Monday, 24th August 2015
PCR of the fragment RFP of pYGG1 for biosensor design using primers 3B FW 2.0 and 3B reverse :
Mix (50 µl) :
25 µl Q5 master mix
2.5 µl reverse primer
2.5 µl forward primer
1 µl DNA
19 µl water
Q5 PCR Program
step 1 : 98°C – 30 seconds
step 2 : 98°C – 10 seconds
step 3 : 57, 60 or 63°C
step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
step 5 : 16°C - Hold
Mutagenesis of IFNgamma and Mat alpha IFN gamma: PCR2
IFN gamma
PCR2 primers :
Mat alpha IFN gamma
PCR2 primers :
Mix (50 µl) :
25 µl Q5 master mix
2.5 µl reverse primer
2.5 µl forward primer
1 µl DNA
19 µl water
Q5 PCR Program
step 1 : 98°C – 30 seconds
step 2 : 98°C – 10 seconds
step 3 : 57, 60 or 63°C
step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
step 5 : 16°C - Hold
Wednesday, 26th August 2015
Miniprep and nanodrop of pYGG1, pYGG2 and AGA1P-pYGG2 using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :
Wednesday, 26th August 2015
PCR Clean up of biobrick Mata-IFNg and biobrick IFNg
Gel electrophoresis (1% agarose) of biobricks Mata-IFNg (BB Mata-IFNg) and IFNg (BB IFNg)
Wednesday, 26th August 2015
PCR Clean up of Biosensor3
Gel electrophoresis (1% agarose) of biosensor 3
Thursday, 27th August 2015
E.coli transformation of biosensor 2 and 3
Thursday, 27th August 2015
PCR of biobrick OVA1
Mix (50 µl) :
25 µl Q5 master mix
2.5 µl reverse primer (P012 RV OVA1)
2.5 µl forward primer (P012 FW OVA1)
1 µl DNA (SD1)
19 µl water
Q5 PCR Program
step 1 : 98°C – 30 seconds
step 2 : 98°C – 10 seconds
step 3 : 57, 60 or 63°C
step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
step 5 : 16°C - Hold
Gel electrophoresis (2% agarose)
Digestion of the following biobricks using NEB kit:
Digestion mix:
2µL NEB Buffer 2.1
0.5µL Eco RI
0.5 µL PstI
500 ng DNA
water qsp 20µL
The mix was left at 1h 37°C under agitation 500rpm and 20 minutes at 80°C.
Friday, 28th August 2015
PCR clean-up and nanodrop of digested products: ul>
Ligation of digested products into pSB1C3 with T4 Ligase (ratio 3:1):
2µL T4 DNA Ligase Buffer
50ng pSB1C3
3:1 insert
water qsp 20µL
1µL T4 DNA Ligase
We let the mix at room temperature for 30 minutes and at 65°C for 10 minutes.
E.coli transformation with ligated products:
Friday, 28th August 2015
Colony PCR of transformed E.coli with biosensor 2 and 3:
PCR colony mix
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)
PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30 s
Step 4 72°C – 2 min (repeat step 2-4 30 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause
Gel electrophoresis (1% agarose)
Miniculture of biosensor 2 and 3
Example notebook entry
I am a big text
i am a justified text.
On the left
Center
i am a green text on the right.
I am a fixed-width text
I am some code
I am a link