Difference between revisions of "Team:UC Davis"
Line 289: | Line 289: | ||
<div class="btn btn-lg" id="attributions">Sponsors</div> | <div class="btn btn-lg" id="attributions">Sponsors</div> | ||
<div class="btn btn-lg" id="achieve">Medals</div> | <div class="btn btn-lg" id="achieve">Medals</div> | ||
− | <div class="btn btn-lg" id="logo"><a href = "https://igem.org/Main_Page"><img src = " | + | <div class="btn btn-lg" id="logo"><a href = "https://igem.org/Main_Page"><img src = "https://upload.wikimedia.org/wikipedia/en/d/d6/IGEM_official_logo.png"></a></div> |
</div> | </div> | ||
Line 358: | Line 358: | ||
<div class = "neighborhood-guides"> | <div class = "neighborhood-guides"> | ||
<div class = "container"> | <div class = "container"> | ||
− | < | + | <tr><td colspan="3"><div class = "well" style="margin-bottom:10px"><p> <strong><center>Producing a Novel Antimicrobial Surface-Binding Peptide Using an Improved T7 Expression System</center></strong><p> |
− | < | + | Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels. This improved system is a precise synthetic switch for the expression of cytotoxic substances in the already robust T7 system. Lastly, the antimicrobial surface-binding peptide was assayed for functionality. |
− | < | + | </p></div></td> |
− | < | + | </tr> |
− | + | ||
− | < | + | <tr><div id = "show"><td colspan="3" style="padding-bottom:10px"><center><img src="https://static.igem.org/mediawiki/2014/5/56/Ampersand.png" width="150"></center></td></div></tr> |
+ | |||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Project"><img src=" | ||
+ | https://static.igem.org/mediawiki/2014/f/f8/Yale-Overview.png" width="1100"></a></td></tr> | ||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Team"><img src="https://static.igem.org/mediawiki/2014/5/50/Yale-Team.png" width="1100"></a></td></tr> | ||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Outreach"><img src="https://static.igem.org/mediawiki/2014/0/08/Yale_Outreach.png" width="1100"></a></td></tr> | ||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Interlab"><img src="https://static.igem.org/mediawiki/2014/3/3c/Yale_Interlab.png" width="1100"></a></td></tr> | ||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Notebook"><img src="https://static.igem.org/mediawiki/2014/2/2c/Yale_Notebook.png" width="1100"></a></td></tr> | ||
+ | |||
+ | <tr><td colspan="3"><a href="https://2014.igem.org/Team:Yale/Achievements"><img src="https://static.igem.org/mediawiki/2014/2/29/Yale_Achivements.png" width="1100"></a></td></tr> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
<script> | <script> | ||
Line 464: | Line 447: | ||
$("#achieve").click(function(){ | $("#achieve").click(function(){ | ||
window.location.href="https://2014.igem.org/Team:UCSD_Software/SoftwareAchievements"; | window.location.href="https://2014.igem.org/Team:UCSD_Software/SoftwareAchievements"; | ||
− | |||
− | |||
− | |||
}); | }); | ||
$("#attributions").click(function(){ | $("#attributions").click(function(){ |
Revision as of 09:12, 6 September 2015
Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels. This improved system is a precise synthetic switch for the expression of cytotoxic substances in the already robust T7 system. Lastly, the antimicrobial surface-binding peptide was assayed for functionality.