Difference between revisions of "Team:Oxford/TestDuke/Practices"
Line 117: | Line 117: | ||
</div> | </div> | ||
<div id="project-viability-increasing-awareness"> | <div id="project-viability-increasing-awareness"> | ||
− | < | + | <h3>Increasing Awareness</h3> |
<p> | <p> | ||
To promote Synthetic Biology and iGEM, we’ve used a variety of approaches. | To promote Synthetic Biology and iGEM, we’ve used a variety of approaches. | ||
Line 123: | Line 123: | ||
<div id="project-viability-increasing-awareness-uniq-workshop"> | <div id="project-viability-increasing-awareness-uniq-workshop"> | ||
<div class="slim"> | <div class="slim"> | ||
− | < | + | <h4>UNIQ Workshop</h4> |
<p> | <p> | ||
We met with 40 prospective Oxford students to teach them about Synthetic Biology. The students had in interest in Biochemistry but knew nothing about iGEM. We hammered home the key message of Synthetic Biology - that we achieve more progress by expanding a registry of standardised biological parts - through a 15 minute introductory presentation on BioBricks. We then split them into groups and gave each one a mentor from our iGEM team. We worked through questions to test their understanding in a tutorial style and asked them to explain the constructs of previous iGEM teams. They finished by presenting their findings to each other. | We met with 40 prospective Oxford students to teach them about Synthetic Biology. The students had in interest in Biochemistry but knew nothing about iGEM. We hammered home the key message of Synthetic Biology - that we achieve more progress by expanding a registry of standardised biological parts - through a 15 minute introductory presentation on BioBricks. We then split them into groups and gave each one a mentor from our iGEM team. We worked through questions to test their understanding in a tutorial style and asked them to explain the constructs of previous iGEM teams. They finished by presenting their findings to each other. | ||
Line 131: | Line 131: | ||
<div id="project-viability-increasing-awareness-utc-oxfordshire"> | <div id="project-viability-increasing-awareness-utc-oxfordshire"> | ||
<div class="slim"> | <div class="slim"> | ||
− | < | + | <h4>UTC Oxfordshire</h4> |
<p> | <p> | ||
A couple of us gave a presentation on antibiotic resistance to a class of GCSE students from UTC Oxfordshire (a local school specialising in science) at the Natural History Museum in Oxford, The Pitt Rivers Museum. Our talk covered the discovery of antibiotics, the advantages of them (including their use in laboratory work), how they work, and how bacteria can evolve to gain resistance to them, as well as concepts such as horizontal gene transfer and the consequences of antibiotic resistance on our everyday lives. It also covered our project outline, and pros and cons of Solution, showing how it should help combat antibiotic resistance. At the end, we held a discussion between the students and our team about antibiotic resistance, and their perception of the concern. We also asked how they would feel about using our engineered bacteria, and the response was positive, with most of the students saying that if their doctor recommended the treatment, they would be open to using it. | A couple of us gave a presentation on antibiotic resistance to a class of GCSE students from UTC Oxfordshire (a local school specialising in science) at the Natural History Museum in Oxford, The Pitt Rivers Museum. Our talk covered the discovery of antibiotics, the advantages of them (including their use in laboratory work), how they work, and how bacteria can evolve to gain resistance to them, as well as concepts such as horizontal gene transfer and the consequences of antibiotic resistance on our everyday lives. It also covered our project outline, and pros and cons of Solution, showing how it should help combat antibiotic resistance. At the end, we held a discussion between the students and our team about antibiotic resistance, and their perception of the concern. We also asked how they would feel about using our engineered bacteria, and the response was positive, with most of the students saying that if their doctor recommended the treatment, they would be open to using it. | ||
Line 138: | Line 138: | ||
</div> | </div> | ||
<div id="project-viability-increasing-awareness-bbc-radio-oxford"> | <div id="project-viability-increasing-awareness-bbc-radio-oxford"> | ||
− | < | + | <h4>BBC Radio Oxford</h4> |
</div> | </div> | ||
</div> | </div> | ||
Line 157: | Line 157: | ||
<ul class="nav nav-stacked"> | <ul class="nav nav-stacked"> | ||
<li><a href="#project-choice-our-inspiration-jorge-talk">Jorge Talk</a></li> | <li><a href="#project-choice-our-inspiration-jorge-talk">Jorge Talk</a></li> | ||
− | <li><a href="#project-choice-our-inspiration-churchill"> | + | <li><a href="#project-choice-our-inspiration-churchill">Churchill Hospital, Oxford</a></li> |
</ul> | </ul> | ||
</li> | </li> |
Revision as of 09:23, 8 September 2015
Practices
Introduction
Our project relies on a three way conversation between the team, the public and experts. It touches every aspect of the project, from our choice of application to the details of our delivery system. We promoted Synthetic Biology and iGEM through outreach programs to inspire the next generation.
Urinary tract infections are a huge problem globally with millions of cases reported each year. We’re producing a guide for everything you need to know about urinary tract infections, as well as a treatment to beat antibiotics, which are rapidly becoming ineffective.
We want to make our website as accessible as possible to all readers, regardless of their level of expertise. Words with a dotted blue underline will show a definition when you hover over them.
Project Choice
Approaching the Public
To decide on our project idea, we sent out an initial questionnaire to the public to hear about what they thought about synthetic biology. We asked what big problems they wanted solving. We took the questionnaire to schools, to the streets and to our friends.
Examples of their suggestions for the applications of synthetic biology include bacteria which:
- Remove carbon dioxide from the atmosphere
- Target and kill cancerous cells
- Help treat Alzheimer's disease
- Produce energy
- Sew up holes in clothes
- Produce teeth glue
- Indicate how long someone has been dead for
- Combat antibiotic resistance
Of our responses, around 40 were related to Medicine and Health [1]. This led us to choose that track for our project. However, it was our team member George Driscoll’s work at the UTI clinic in London which helped us to select UTIs as a specific cause. Due to the un-aesthetic nature of the infection, it often receives less attention with regard to research.
A large proportion of our responses expressed concern for how Synthetic Biology would be used in society, with several references to the issues of contamination and exploitation for profit. With this in mind, we constructed a second questionnaire about our project, to test whether the public would get behind it.
Initial Feedback
We sent a second questionnaire to find out more about whether the public would use a Solution from synthetic biology to treat Urinary tract infections. We asked more about whether they had heard of genetic engineering or synthetic biology, and how much they trust a recommended treatment by a doctor. In collaboration with UCL, we also filmed some of these responses on the street. The results were overwhelmingly positive.
Our Inspiration
Jorge Talk
Churchill Hospital, Oxford
The Problem
Our Solution
Project Viability
Will Our Idea Work?
Ethics
The UTI Clinic
Delivery Method
Increasing Awareness
To promote Synthetic Biology and iGEM, we’ve used a variety of approaches.
UNIQ Workshop
We met with 40 prospective Oxford students to teach them about Synthetic Biology. The students had in interest in Biochemistry but knew nothing about iGEM. We hammered home the key message of Synthetic Biology - that we achieve more progress by expanding a registry of standardised biological parts - through a 15 minute introductory presentation on BioBricks. We then split them into groups and gave each one a mentor from our iGEM team. We worked through questions to test their understanding in a tutorial style and asked them to explain the constructs of previous iGEM teams. They finished by presenting their findings to each other.
UTC Oxfordshire
A couple of us gave a presentation on antibiotic resistance to a class of GCSE students from UTC Oxfordshire (a local school specialising in science) at the Natural History Museum in Oxford, The Pitt Rivers Museum. Our talk covered the discovery of antibiotics, the advantages of them (including their use in laboratory work), how they work, and how bacteria can evolve to gain resistance to them, as well as concepts such as horizontal gene transfer and the consequences of antibiotic resistance on our everyday lives. It also covered our project outline, and pros and cons of Solution, showing how it should help combat antibiotic resistance. At the end, we held a discussion between the students and our team about antibiotic resistance, and their perception of the concern. We also asked how they would feel about using our engineered bacteria, and the response was positive, with most of the students saying that if their doctor recommended the treatment, they would be open to using it.