Difference between revisions of "Team:Amoy/Notebook"

Line 617: Line 617:
 
<div style="width: 80%; margin-left: 10%;">
 
<div style="width: 80%; margin-left: 10%;">
 
<p class="detail_h1">Purpose:</br></p>
 
<p class="detail_h1">Purpose:</br></p>
<p class="detail_p">make connection of promoter and rbs</br></p>
+
<p class="detail_p">Ligation of promoter and RBS_B0032</br></p>
 
<p class="detail_h1">Steps:</br></p>
 
<p class="detail_h1">Steps:</br></p>
 
<p class="detail_p">
 
<p class="detail_p">
1. Double enzyme digestion of LacI and rbs_B0032</br>
+
1. Double enzyme digestion of P<sub>lac</sub> and RBS_B0032</br>
 
2. Electrophoresis analysis of double digested result of plasmid</br></p>
 
2. Electrophoresis analysis of double digested result of plasmid</br></p>
 
<img style="width: 30%; margin-right: 70%; margin-top: 10px; margin-bottom: 0px;" src="https://static.igem.org/mediawiki/2015/1/1f/Amoy-Notebook_Node32_figure1.jpg" />
 
<img style="width: 30%; margin-right: 70%; margin-top: 10px; margin-bottom: 0px;" src="https://static.igem.org/mediawiki/2015/1/1f/Amoy-Notebook_Node32_figure1.jpg" />

Revision as of 10:30, 13 September 2015

Aomy/Project

NOTEBOOK

Initially, they used isolated enzymes, which can be disadvantageous for the reason that enzymes are always destabilized in the isolation and purification process. What's more, the cofactor-NADH is rather an expensive raw material, which will enhance the cost of L-tert-leucine production. So scientists introduced whole-cell biocatalysts to L-tert-leucine production. Whole-cell biocatalysts could stabilize enzymes and reduce the addition level of cofactor NADH.

In the path of building our biobricks, we divided the circuits into two modules. One is promoter linked with rbs and the other is gene linked with terminator. The dendrogram below is our experiments detail. Click each bottom for more information.

CONTACT US

Email: igemxmu@gmail.com

Website: 2015.igem.org/Team:Amoy

Address: Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, P.R.China 361005