Difference between revisions of "Team:Waterloo/Modeling/CaMV Replication"

m (Added life cycle stuff and a few more assumptions)
Line 254: Line 254:
 
                       </tbody>
 
                       </tbody>
 
                     </table>
 
                     </table>
    </section>
 
 
    <section id="validation" title="Model Validation">
 
        <h2>Model Validation</h2>
 
 
     </section>
 
     </section>
  
 
     <section id="results" title="Results">
 
     <section id="results" title="Results">
 
         <h2>Results</h2>
 
         <h2>Results</h2>
 +
 +
        <h3>Model Validation</h3>
 +
<p>Include notes on how the model matches reality/our expectations of reality in this section.</p>
 +
 
     </section>
 
     </section>
  
 
     <section id="discussion" title="Discussion">
 
     <section id="discussion" title="Discussion">
         <h2>Headers</h2>
+
         <h2>Discussion</h2>
 
     </section>
 
     </section>
  

Revision as of 00:04, 15 September 2015

CaMV Replication

This page contains all our information about the CaMV replication model.

Model Formation

Viral Life Cycle

Patrick and Mark please review

There are a few stages, we are focused on the replication one.

Network

DNA

$$\frac{d d_g}{dt} = k_v V (d_{max} - d_{total}) - \alpha_c d_g - k_g d_g - \gamma_d d_g$$ $$\frac{d d_c}{dt} = \alpha_c d_g - k_c d_c - \gamma_d d_c$$ $$\frac{d d_{gm}}{dt} = k_v V_m (d_{max} - d_{total}) - \alpha_c d_{gm} + k_g d_g - \gamma_d d_{gm}$$ $$\frac{d d_{cm}}{dt} = \alpha_c d_{gm} + k_c d_c - \gamma_d d_{cm}$$

RNA

$$\frac{d r_{19S}}{dt} = \alpha_{19S} d_c - (\gamma_{19S}+\gamma_{r}) r_{19S}$$ $$\frac{d r_{35S}}{dt} = \alpha_{35S} d_c - k_p p_4 p_5 f_u r_{35S} - (\gamma_{35S}+\gamma_{r}) r_{35S}$$ $$\frac{d r_{35Sm}}{dt} = \alpha_{35S} d_{cm} - k_p p_4 p_5 f_u r_{35Sm} - (\gamma_{35S}+\gamma_{r}) r_{35Sm}$$

Protein

$$\frac{d p_3}{dt} = \beta_3 \left( \frac{p_6}{p_6+K_6} \right) (r_{35S} + r_{35Sm}) - k_a p_3 (V_i+V_{im}) - \delta_3 p_3$$ $$\frac{d p_4}{dt} = \beta_4 \left( \frac{p_6}{p_6+K_6} \right) (r_{35S} + r_{35Sm}) - k_p p_4 p_5 f_u (r_{35S} + r_{35Sm}) - \delta_4 p_4$$ $$\frac{d p_5}{dt} = \beta_5 \left( \frac{p_6}{p_6+K_6} \right) (r_{35S} + r_{35Sm}) - k_p p_4 p_5 f_u (r_{35S} + r_{35Sm}) - \delta_5 p_5$$ $$\frac{d p_6}{dt} = \beta_6 r_{19S} - \delta_6 p_6$$

Virions

$$\frac{d V_i}{dt} = k_p p_4 p_5 f_u r_{35S} - k_a p_3 V_i$$ $$\frac{d V}{dt} = k_a p_3 V_i - k_v V (d_{max} - d_{total}) - v_e V - \delta_v V$$ $$\frac{d V_{im}}{dt} = k_p p_4 p_5 f_u r_{35Sm} - k_a p_3 V_{im}$$ $$\frac{d V_m}{dt} = k_a p_3 V_{im} - k_v V_m (d_{max} - d_{total}) - v_e V_m - \delta_v V_m$$

Algebraic Equations

$$d_{total} = d_g + d_c + d_{gm} + d_{cm}$$ $$\gamma_r = \frac{L}{1+e^{k (p_6-x_0)}}$$ $$x_0 = \frac{1}{2} p_6 ^{ss}$$ $$p_6 ^{ss} = \frac{\beta_6}{\delta_6} \frac{\alpha_{19}}{\gamma_{19}} d_{max}$$

Assumptions

Cell concentrations are continuous Molecules No outside infection

This ODE model only tracks replication within one cell, it cannot track multiple cells. This is handled by the viral spread model instead.

Limited number of genomes in nucleus

"Another pool of viral genomes, in the order of 10-100 copies of minichromosomes comprising supercoiled circular viral DNA and host histones, accumulates in the nucleus."

Rate of repair of gapped DNA follows mass-action

This assumption is made in the paper by Nakabayashi

Rate of P6 knockdown follows mass-action

E

DNA, RNA, proteins, and complete virions degrade, incomplete virions do not

E

We are only targeting 19S RNA

E

RNA production follows mass-action

E

Concentration of spliced/unspliced RNA is at rapid equilibrium

E

Spliced and unspliced 35S RNA degrade at the same rate

E

Packaging occurs in one step

E

Only unspliced RNA is packaged

E

P1 and P2 do not affect replication dynamics

E

P6 is only translated from 19S RNA, translation rate is constant

E

P3, P4, and P5 are translated from 35S RNA, translation is activated by P6

E

Ignore Inclusion Body Formation

E

Ignore P6 in nucleus

E

Mass-action anchoring of P3 to virions

E

All P4 is instantaneously spliced

E

Virions may reinfect nucleus

E

Virions leave the cell at a constant rate

E

Parameters

Here are the parameters for the model

Symbol Value Units Description
$k_v$ 0.1 min$^{-1}$ Rate at which virions produced by the cell reinfect the nucleus.
$d_{max}$ 100/vol molecules/volume Maximum concentration of viral genomes in the nucleus.
$\alpha_c$ 0.1 min$^{-1}$ Rate at which gaps are repaired in gapped DNA to form cccDNA.
$k_g$ 0.01 min$^{-1}$ Rate at which the P6 gene on the gapped DNA is modified.
$k_c$ 0.01 min$^{-1}$ Rate at which the P6 gene on cccDNA is modified.
$\gamma_d$ 0.001 min$^{-1}$ DNA Degradation rate.
$\alpha_{19S}$ 0.01 min$^{-1}$ Transcription rate of 19S RNA.
$\alpha_{35S}$ 0.05 min$^{-1}$ Transcription rate of 35S RNA.
$\gamma_{19S}$ 0.001 min$^{-1}$ Degradation rate of 19S RNA.
$\gamma_{35S}$ 0.001 min$^{-1}$ Degradation rate of 35S RNA.
$f_u$ 0.3 unitless Fraction of unspliced 35S RNA in the cell (assumed at equilibrium).
$\beta_3$ 0.1 min$^{-1}$ Translation rate of P3.
$\beta_4$ 0.1 min$^{-1}$ Translation rate of P4.
$\beta_5$ 0.1 min$^{-1}$ Translation rate of P5.
$\beta_6$ 0.1 min$^{-1}$ Translation rate of P6.
$K_6$ 1000 molecules/volume Half-saturation constant for transactivation of P1-P5 production.
$\delta_3$ 0.001 min$^{-1}$ Degradation rate of P3.
$\delta_4$ 0.001 min$^{-1}$ Degradation rate of P4.
$\delta_5$ 0.001 min$^{-1}$ Degradation rate of P5.
$\delta_6$ 0.001 min$^{-1}$ Degradation rate of P6.
$k_p$ 0.1 ??? Packaging rate.
$k_a$ 0.1 ??? Rate of P3 anchoring to virions.
$v_e$ 0.1 min$^{-1}$ Rate at which virions exit the cell.
$\delta_v$ 0.001 min$^{-1}$ Rate of virion degradation.

Results

Model Validation

Include notes on how the model matches reality/our expectations of reality in this section.

Discussion

References

    Top