Difference between revisions of "Team:Stanford-Brown/PS"

Line 116: Line 116:
 
   </div>
 
   </div>
 
</div>
 
</div>
 +
<h1>Polystyrene: biologically producing self-folding plastics</h1>
 +
<h2>Introduction</h2>
  
<p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
+
<p>Polystyrene is one of the most widely used plastics today. As a synthetic polymer of styrene monomers, polystyrene exhibits self-folding properties when heated. We endeavored to biologically synthesize styrene by genetically engineering E. coli to produce the enzymes required in the pathway from L-phenylalanine to trans-cinnamic acid to styrene. Using this pathway we aim to produce the styrene monomer both in vivo and in vitro from renewable sources. After producing styrene biologically, we characterized a method for polymerizing styrene into the polymer, polystyrene, which is then ready for folding.
 +
</p>
  
  Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
<h2>Styrene Synthesis:  Engineering E. coli to produce the styrene monomer</h2>
  
  Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
+
<h3>From genes to proteins</h3>
  
 +
<p>The first step in making biologically produced polystyrene is to create the monomer styrene.  After combing through the literature we found a two-step enzymatic pathway from the amino acid phenylalanine to styrene.  The pathway had successfully been achieved in our host organism, E. coli, by the McKenna group from Arizona State University in 2011.  As we read more about styrene synthesis we found that the two-step pathway was actually more complicated than it looked.  The second enzyme in the pathway, Ferulic Acid Decarboxylase (FDC), was regulated by an unknown co-factor, and this co-factor was produced by a third enzyme UbiX.  We later read in a paper published this June 2015, that the unknown co-factor was a prenylated riboflavin formed from dimethylallyl monophosphate (DMAP) and flavin mononucleotide (FMN).  So we had found a complete pathway to produce styrene in E. coli.  Now we just needed to get the three proteins PAL, FDC and UbiX.  In order to obtain our enzymes we followed three steps: Step one, get the genes.  Step two, put the genes into plasmids.  And step three, turn genes into proteins.  </p>
 +
 +
<p><b>Step one:  Get the genes</b></p>
 +
 +
<p>In order to get the genes that encoded our three enzymes we either extracted the gene directly from a host organism, synthesized the gene using Integrated DNA Technologies (IDT), or ordered the preexisting part from the iGEM registry.  </p>
 +
 +
<p>Our first enzyme PAL was previously characterized by the University of British Columbia 2013 iGEM team.  We ordered their biobrick (BBa_K1129003) from the registry.  However, this PAL gene was extracted from Streptomyces maritimus.  In Rebbecca McKenna’s 2011 paper she found that the PAL gene from Streptomyces maritimus was nearly completely ineffective.  So in addition to ordering UCB’s PAL biobrick we also ordered from IDT a codon optimized (for E. coli) version of the PAL gene from Anabaena variabilis.  We chose the PAL gene from Anabaena variabilis because it was well characterized in literature and had been shown to be an effective phenyalanine ammonia lyase.  </p>
 +
 +
<p>For our second enzyme FDC we both extracted the gene directly from Saccharomyces cerevisiae and ordered this gene codon optimized (for E. coli) from IDT.  </p>
 +
 +
<p>For our last enzyme UbiX we both extracted the gene directly from E. coli  and ordered this gene with a FLAG tag from IDT.  As we will explain later on, we used a FLAG tag sequence at the end of all of our synthesized genes in order to extract and purify the protein for in-vitro assays.
 
</p>
 
</p>
 +
 +
<p><b>Step two:  Put the genes into plasmids</b></p>
 +
 +
<p>After obtaining our genes, we needed to insert them into the standard pSB1C3 backbone so we could submit them as biobricks.  To do this we digested our linear gene and standard iGEM RFP plasmid (BBa_J04450) with a combination of EcoRI and SpeI or PstI restriction enzymes.  We then ligated with T4 ligase and transformed into NEB 5-alpha competent E. coli cells.  See below for our digestion, ligation, transformation protocol.  We confirmed our gene insert through DNA sequencing with VF2 and VR primers.  </p>
 +
 +
  
  

Revision as of 16:14, 15 September 2015

SB iGEM 2015

Welcome to Polystyrene Write catchy subtitle description

Abstract to create Cellulose using G. hansenii

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

See our BioBricks
Generic placeholder image

Introduction with the following projects below

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Polystyrene: biologically producing self-folding plastics

Introduction

Polystyrene is one of the most widely used plastics today. As a synthetic polymer of styrene monomers, polystyrene exhibits self-folding properties when heated. We endeavored to biologically synthesize styrene by genetically engineering E. coli to produce the enzymes required in the pathway from L-phenylalanine to trans-cinnamic acid to styrene. Using this pathway we aim to produce the styrene monomer both in vivo and in vitro from renewable sources. After producing styrene biologically, we characterized a method for polymerizing styrene into the polymer, polystyrene, which is then ready for folding.

Styrene Synthesis: Engineering E. coli to produce the styrene monomer

From genes to proteins

The first step in making biologically produced polystyrene is to create the monomer styrene. After combing through the literature we found a two-step enzymatic pathway from the amino acid phenylalanine to styrene. The pathway had successfully been achieved in our host organism, E. coli, by the McKenna group from Arizona State University in 2011. As we read more about styrene synthesis we found that the two-step pathway was actually more complicated than it looked. The second enzyme in the pathway, Ferulic Acid Decarboxylase (FDC), was regulated by an unknown co-factor, and this co-factor was produced by a third enzyme UbiX. We later read in a paper published this June 2015, that the unknown co-factor was a prenylated riboflavin formed from dimethylallyl monophosphate (DMAP) and flavin mononucleotide (FMN). So we had found a complete pathway to produce styrene in E. coli. Now we just needed to get the three proteins PAL, FDC and UbiX. In order to obtain our enzymes we followed three steps: Step one, get the genes. Step two, put the genes into plasmids. And step three, turn genes into proteins.

Step one: Get the genes

In order to get the genes that encoded our three enzymes we either extracted the gene directly from a host organism, synthesized the gene using Integrated DNA Technologies (IDT), or ordered the preexisting part from the iGEM registry.

Our first enzyme PAL was previously characterized by the University of British Columbia 2013 iGEM team. We ordered their biobrick (BBa_K1129003) from the registry. However, this PAL gene was extracted from Streptomyces maritimus. In Rebbecca McKenna’s 2011 paper she found that the PAL gene from Streptomyces maritimus was nearly completely ineffective. So in addition to ordering UCB’s PAL biobrick we also ordered from IDT a codon optimized (for E. coli) version of the PAL gene from Anabaena variabilis. We chose the PAL gene from Anabaena variabilis because it was well characterized in literature and had been shown to be an effective phenyalanine ammonia lyase.

For our second enzyme FDC we both extracted the gene directly from Saccharomyces cerevisiae and ordered this gene codon optimized (for E. coli) from IDT.

For our last enzyme UbiX we both extracted the gene directly from E. coli and ordered this gene with a FLAG tag from IDT. As we will explain later on, we used a FLAG tag sequence at the end of all of our synthesized genes in order to extract and purify the protein for in-vitro assays.

Step two: Put the genes into plasmids

After obtaining our genes, we needed to insert them into the standard pSB1C3 backbone so we could submit them as biobricks. To do this we digested our linear gene and standard iGEM RFP plasmid (BBa_J04450) with a combination of EcoRI and SpeI or PstI restriction enzymes. We then ligated with T4 ligase and transformed into NEB 5-alpha competent E. coli cells. See below for our digestion, ligation, transformation protocol. We confirmed our gene insert through DNA sequencing with VF2 and VR primers.

Experiment Engineering E. coli to produce polystyrene

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex. Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim. Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros. Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis. Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.

Data and Results Optimizing the production of biological PHA

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex. Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim. Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros. Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis. Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.

See our Picture Gallery!

Protocols

Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.

Duis nec nibh non nisl tristique condimentum quis eu leo.

Sed venenatis massa in tortor gravida dictum.

Nam sollicitudin enim ac egestas fermentum. Suspendisse tempor urna vel mollis mollis. Proin ac mauris facilisis sapien maximus suscipit nec eget felis. Fusce ac urna sit amet nunc condimentum gravida. Aenean commodo nunc et tempus egestas. Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis. Curabitur et erat non justo eleifend commodo. In sit amet sem vitae eros placerat facilisis. Quisque eget ligula vel tellus fermentum vestibulum. Curabitur eu ligula non lorem pulvinar posuere ac commodo ante. Sed convallis quam ut risus dignissim, nec pellentesque risus malesuada. Vestibulum vel sem eu tortor ornare consequat ac eget ligula. Suspendisse eu lacus ut nisi aliquet mollis id nec eros. Integer vulputate sem sed massa porta, eget dapibus odio pellentesque. Morbi sit amet lacus quis urna mattis elementum.

See our Lab Notebook!

References

Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor. Duis nec nibh non nisl tristique condimentum quis eu leo. Sed venenatis massa in tortor gravida dictum. Nam sollicitudin enim ac egestas fermentum. Suspendisse tempor urna vel mollis mollis. Proin ac mauris facilisis sapien maximus suscipit nec eget felis. Fusce ac urna sit amet nunc condimentum gravida. Aenean commodo nunc et tempus egestas. Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis. Curabitur et erat non justo eleifend commodo. In sit amet sem vitae eros placerat facilisis. Quisque eget ligula vel tellus fermentum vestibulum.p>


Copyright © 2015 Stanford-Brown iGEM Team