Difference between revisions of "Team:NEFU China/fit"
m |
m |
||
Line 13: | Line 13: | ||
<!--nav end--> | <!--nav end--> | ||
− | <div class="s2_1box"> | + | <div class="s2_1box" style="background:none;color:white;"> |
<p><span style="font-family:arial,helvetica,sans-serif">Yogurt can easily get bacteria contamination when improperly stored. We generally cannot determine whether a cup of yogurt is safe for eating just through checking its appearance, so we asked this question: can we make spoiled yogurt look different? <br /> | <p><span style="font-family:arial,helvetica,sans-serif">Yogurt can easily get bacteria contamination when improperly stored. We generally cannot determine whether a cup of yogurt is safe for eating just through checking its appearance, so we asked this question: can we make spoiled yogurt look different? <br /> | ||
This year, the iGEM team of NEFU_China aims at creating a novel and handy method for the detection of pathogens in yogurt. Autoinducer2 (AI-2), a signal molecule constantly produced by pathogens in yogurt, serves as the key in our project. We cloned genes related to the AI-2 responsive pathway in <em>Salmonella</em> <em>typhimurium</em> and integrated them into the genome of <em>Lactobacillus bulgaricus</em>. Our engineered<em> Lactobacillus </em>will be able to uptake AI-2 molecules from pathogens and trigger the expression of a report gene that produces a blue pigment. Since our engineered<em> Lactobacillus</em> can act as an auxiliary starter in yogurt fermentation, the detecting process can be greatly simplified. If you open a cup of yogurt and find it has already turned blue, you can just trash it.</span></p> | This year, the iGEM team of NEFU_China aims at creating a novel and handy method for the detection of pathogens in yogurt. Autoinducer2 (AI-2), a signal molecule constantly produced by pathogens in yogurt, serves as the key in our project. We cloned genes related to the AI-2 responsive pathway in <em>Salmonella</em> <em>typhimurium</em> and integrated them into the genome of <em>Lactobacillus bulgaricus</em>. Our engineered<em> Lactobacillus </em>will be able to uptake AI-2 molecules from pathogens and trigger the expression of a report gene that produces a blue pigment. Since our engineered<em> Lactobacillus</em> can act as an auxiliary starter in yogurt fermentation, the detecting process can be greatly simplified. If you open a cup of yogurt and find it has already turned blue, you can just trash it.</span></p> |
Revision as of 13:01, 16 September 2015
Yogurt can easily get bacteria contamination when improperly stored. We generally cannot determine whether a cup of yogurt is safe for eating just through checking its appearance, so we asked this question: can we make spoiled yogurt look different?
This year, the iGEM team of NEFU_China aims at creating a novel and handy method for the detection of pathogens in yogurt. Autoinducer2 (AI-2), a signal molecule constantly produced by pathogens in yogurt, serves as the key in our project. We cloned genes related to the AI-2 responsive pathway in Salmonella typhimurium and integrated them into the genome of Lactobacillus bulgaricus. Our engineered Lactobacillus will be able to uptake AI-2 molecules from pathogens and trigger the expression of a report gene that produces a blue pigment. Since our engineered Lactobacillus can act as an auxiliary starter in yogurt fermentation, the detecting process can be greatly simplified. If you open a cup of yogurt and find it has already turned blue, you can just trash it.