Difference between revisions of "Team:Penn/Sender"

Line 23: Line 23:
 
/* Typography */
 
/* Typography */
 
/**************************/
 
/**************************/
#parallax-world-of-ugg h1 {font-family:'Oswald', sans-serif; font-size:100px; font-weight:600; text-transform: uppercase; color:black; padding:10px; margin:0;}
+
#parallax-world-of-ugg h1 {font-family:'Oswald', sans-serif; font-size:24px; font-weight:400; text-transform: uppercase; color:black; padding:10px; margin:0;}
#parallax-world-of-ugg h2 {font-family:'Oswald', sans-serif; font-size:70px; letter-spacing:10px; text-align:center; color:white; font-weight:400; text-transform:uppercase; z-index:10; opacity:.8;}
+
#parallax-world-of-ugg h2 {font-family:'Oswald', sans-serif; font-size:70px; letter-spacing:10px; text-align:center; color:white; padding:50px; font-weight:400; text-transform:uppercase; z-index:10; opacity:.8;}
 
#parallax-world-of-ugg h3 {font-family:'Oswald', sans-serif; font-size:14px; line-height:0; font-weight:400; letter-spacing:8px; text-transform: uppercase; color:black;}
 
#parallax-world-of-ugg h3 {font-family:'Oswald', sans-serif; font-size:14px; line-height:0; font-weight:400; letter-spacing:8px; text-transform: uppercase; color:black;}
 
#parallax-world-of-ugg p {font-family:'Source Sans Pro', sans-serif; font-weight:400; font-size:18px; line-height:24px;}
 
#parallax-world-of-ugg p {font-family:'Source Sans Pro', sans-serif; font-weight:400; font-size:18px; line-height:24px;}

Revision as of 00:05, 17 September 2015

University of Pennsylvania iGEM

PENN iGEM 2015



SENDER


IS THE LIGHT PRODUCED BY THE SENDER CELL SUFFICIENT TO ACTIVATE THE RECEIVER CELL?


INTRODUCTION

An effective light-based communication system rests on the bioluminesence generated by the “sender cell.” In order to design a well-functioning system, the Penn 2015 iGEM team worked to optimize the light output of various E.coli “sender cells” transformed with the lux operon (BBa_K325909).

Lux operon expression is responsible for bioluminescence. The operon is initiated by a constitutive promoter (BBa_J23100) followed by an RBS + lux box. The box contains the following: LuxC, D, A, B, E and G. LuxA and B encode two subunits of bacterial luciferase. The genes LuxC, D, and E drive expression of the substrate for the light-emitting reaction, tetradecanal. The function of the luxG gene is yet to be fully elucidated; however, inclusion of the gene is known to increase light output (CITATION). The circuit is completed with a stop codon and a terminator sequence.

Our sender cell characterization was founded on determining the photons/second trends for luminescing cell populations. This information was important in order to determine if light produced by the lux box is sufficient to activate the light-activated transcription factor of the receiver cell population.