Difference between revisions of "Team:ZJU-China/Modeling"

Line 73: Line 73:
 
          
 
          
 
         <div class="div-row-in" style="width:30%">
 
         <div class="div-row-in" style="width:30%">
         <a class="green button" href="https://2015.igem.org/Team:ZJU-China/Modeling/second">Click-me!</a>
+
         <a class="green button" href="https://2015.igem.org/Team:ZJU-China/Modeling/second">Clickme!</a>
 
         </div>
 
         </div>
 
        
 
        

Revision as of 13:42, 17 September 2015

MODELING OVERVIEW







Termite Simulation

The last step of wet lab proves the poison effect of toxic proteins and the practicability of the device. After that, before our products come into service, one necessary step is simulating the action of termites, which can prove that toxic proteins work in reality. Also, in order to test the robustness and the effectiveness of the simulation code in an unknown environment, we load some environment images into the code and then test the performance of the code.

Mass transfer model

In our Termite Application Experiments, we have tested cellulose activity in Coptotermes formosanus alimentary tract to. When the activity increases, the etching rate of CNC coat increases. As a result, we must monitor the thickness to prevent the Toxins from leaking so much before trophallaxis takes place. Also, the leaked Toxins must work before our production is excreted.

Degradation model

Toxalbumin is produced by cell and resolved by enzyme or itself.We build model for the process based on Michaelis-Menten equation.

Michaelis-Menten equation is the velocity equation of the relationship between the initial velocity of the enzymatic reaction and the concentration of substrate which is indicated. We suppose that the producing and degradation observe this law.