|
|
Line 42: |
Line 42: |
| <h3 class="wow fadeInDown">How many ATP molecules?</h3> | | <h3 class="wow fadeInDown">How many ATP molecules?</h3> |
| </header> | | </header> |
− | <p><strong>What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</strong><br /> | + | |
− | Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_1')" href="#refs_1">[1]</a></sup>. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K<sub>m</sub>, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p>
| + | |
− | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup><sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_3')" href="#refs_3">[3]</a></sup></p>
| + | |
| <div class="row"> | | <div class="row"> |
− | <div class="12u 12u(narrower)"> | + | <div class="6u 12u(narrower)"> |
| | | |
− | <div class="captionbox" style="max-width:900px;">
| + | |
− | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%;"/></a> | + | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%; max-width:800px;"/></a> |
− | <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p>
| + | |
− | </div>
| + | |
− |
| + | |
− | <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p>
| + | |
− | <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p>
| + | |
− | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p>
| + | |
− | <p>At the boundary condition:</p>
| + | |
− | <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p>
| + | |
− | <p>Hence:</p>
| + | |
− | <p style="text-align:center">$V\max \; =\; \frac{K_{m}+I}{R_{PR}*I}\; =\; 1.375*10^{-14}\; \Omega ^{-1}$</p>
| + | |
− | <p>The rate of reaction, $v$, has units of $\Omega ^{\left( -1 \right)}$; through dimensional analysis we can see that $\Omega ^{-1}\; =\; \frac{Amps}{Volts}\; =\frac{coulombs}{\left( \sec ond*voltage \right)}$.
| + | |
− | The voltage across the PR, $V_{PR=}0.2\; Volts\;$ <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup> and the charge of a proton is $q=1.6*10^{\left( -19 \right)}\; \mbox{C}$.</p>
| + | |
− | <p>Therefore we can work out the number of protons pumped by the PR per second as</p>
| + | |
− | <p style="text-align:center">$N_{Proton}\; =\; \frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p>
| + | |
− | <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p>
| + | |
− | <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p>
| + | |
− | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_4')" href="#refs_4">[4]</a></sup>.</p>
| + | |
| | | |
− | <div class="captionbox" style="max-width:900px;"> | + | <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
− | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" title="A Michaelis-Menten curve"><img src="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" alt="" style="width:100%;"/></a>
| + | </div> |
− | <p class="image_caption"><span>A Michaelis-Menten curve</span>ATP production per second per bacterium as a function of a irradiance of light.</p>
| + | <div class="6u 12u(narrower)"> |
− | </div>
| + | <p><strong>What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</strong><br /> |
− | </div>
| + | Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_1')" href="#refs_1">[1]</a></sup>. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K<sub>m</sub>, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p> |
| + | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup><sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_3')" href="#refs_3">[3]</a></sup></p> |
| + | </div> |
| </div> | | </div> |
| + | |
| + | <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p> |
| + | <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
| + | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
| + | <p>At the boundary condition:</p> |
| + | <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
| + | <p>Hence:</p> |
| + | <p style="text-align:center">$V\max \; =\; \frac{K_{m}+I}{R_{PR}*I}\; =\; 1.375*10^{-14}\; \Omega ^{-1}$</p> |
| + | <p>The rate of reaction, $v$, has units of $\Omega ^{\left( -1 \right)}$; through dimensional analysis we can see that $\Omega ^{-1}\; =\; \frac{Amps}{Volts}\; =\frac{coulombs}{\left( \sec ond*voltage \right)}$. |
| + | The voltage across the PR, $V_{PR=}0.2\; Volts\;$ <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup> and the charge of a proton is $q=1.6*10^{\left( -19 \right)}\; \mbox{C}$.</p> |
| + | <p>Therefore we can work out the number of protons pumped by the PR per second as</p> |
| + | <p style="text-align:center">$N_{Proton}\; =\; \frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> |
| + | <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p> |
| + | <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> |
| + | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_4')" href="#refs_4">[4]</a></sup>.</p> |
| + | |
| + | <div class="captionbox" style="max-width:900px; width:80%;"> |
| + | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" title="A Michaelis-Menten curve"><img src="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" alt="" style="width:100%;"/></a> |
| + | <p class="image_caption"><span>A Michaelis-Menten curve</span>ATP production per second per bacterium as a function of a irradiance of light.</p> |
| + | </div> |
| </div> | | </div> |
| </section> | | </section> |