Difference between revisions of "Team:Queens Canada/AFP Scaffold"
Line 62: | Line 62: | ||
<p>While overall successful, these experiments introduced another issue to the preservation of organs, one related to osmolarity. As solution freezes with AFPs present, the concentration of solutes outside of the cells becomes more concentrated with decreasing amounts of liquid. The extracellular environment thus becomes hypertonic in relation to the cell interior and water rushes out of the cell causing it to shrink. Upon tissue thawing, large pools of water can cause cells to swell and rupture, resulting in non-viable samples. The optimal concentration of AFPs enables both effective inhibition of ice growth and minimization of AFP-induced cell damage<sup>4</sup>. Figure 1 demonstrates the variable ice crystal shapes that occur depending on AFP concentration. </p> | <p>While overall successful, these experiments introduced another issue to the preservation of organs, one related to osmolarity. As solution freezes with AFPs present, the concentration of solutes outside of the cells becomes more concentrated with decreasing amounts of liquid. The extracellular environment thus becomes hypertonic in relation to the cell interior and water rushes out of the cell causing it to shrink. Upon tissue thawing, large pools of water can cause cells to swell and rupture, resulting in non-viable samples. The optimal concentration of AFPs enables both effective inhibition of ice growth and minimization of AFP-induced cell damage<sup>4</sup>. Figure 1 demonstrates the variable ice crystal shapes that occur depending on AFP concentration. </p> | ||
− | <p>The Ice Queen aims to optimize the situations described above. In using Type III AFPs, a solution can be cooled below | + | <p>The Ice Queen aims to optimize the situations described above. In using Type III AFPs, a solution can be cooled below 0<sup>o</sup>C enabling longer storage of organs. In attaching these AFPs to a scaffold unit, the concentration of solutes can be controlled to optimize AFP concentration and eliminate a problematic osmotic gradient. In essence, the attachment of AFPs to a scaffold increases the local concentration of active proteins while balancing the discrepancy between the total solute concentrations on either side of the cell membrane. </p> |
</div> | </div> |
Latest revision as of 18:49, 17 September 2015