Difference between revisions of "Team:KU Leuven/Research/Methods"
Line 144: | Line 144: | ||
<div id="toggletwo" > | <div id="toggletwo" > | ||
<p><b>Theory</b><br/> | <p><b>Theory</b><br/> | ||
− | The Gibson assembly as described by Gibson et al., is a rapid DNA assembly method that assures directional cloning of fragments in one single reaction. To perform the Gibson assembly, three essential enzymes are needed: a mesophylic nuclease, a thermophylic ligase and a high fidelity polymerase. Therefore, the NEBuilder<sup>Ⓡ</sup> HiFi DNA Assembly Master Mix (New England Biolabs) was used. In the first step of this reaction, the exonuclease rapidly cleaves off the 5’ DNA ends. The exonuclease is unstable at 50°C and gets degraded early in the process. In the second step, the designed sequence overlaps anneal and the polymerase starts filling in the gaps. The ligase then covalently joins both ends finalizing the plasmid assembly for transformation. This text was based on <a href="https://www.idtdna.com/pages/docs/default-source/user-guides-and-protocols/gibson-assembly.pdf?sfvrsn=16">the IDT website as seen on 13/09/2015</a></p> | + | The Gibson assembly as described by Gibson et al., is a rapid DNA assembly method that assures directional cloning of fragments in one single reaction. To perform the Gibson assembly, three essential enzymes are needed: a mesophylic nuclease, a thermophylic ligase and a high fidelity polymerase. Therefore, the NEBuilder<sup>Ⓡ</sup> HiFi DNA Assembly Master Mix (New England Biolabs) was used. In the first step of this reaction, the exonuclease rapidly cleaves off the 5’ DNA ends. The exonuclease is unstable at 50°C and gets degraded early in the process. In the second step, the designed sequence overlaps anneal and the polymerase starts filling in the gaps. The ligase then covalently joins both ends finalizing the plasmid assembly for transformation. This text was based on <a href="https://www.idtdna.com/pages/docs/default-source/user-guides-and-protocols/gibson-assembly.pdf?sfvrsn=16">the IDT website as seen on 13/09/2015</a>. In the following paragraph, our optimized protocol is given.</p> |
<div class="center"> | <div class="center"> | ||
Line 155: | Line 155: | ||
</div> | </div> | ||
− | <p><b> | + | |
− | < | + | <p><b>Protocols</b><br/> |
+ | <dl><dt>Create pUC 19 plasmid with complementary sequence overhangs</dt></p> | ||
</div> | </div> |
Revision as of 20:25, 18 September 2015
Methods
On this page you can find all of the methods and protocols used in the lab to obtain our results. For some techniques, we included some basic theory, since it is a prerequisite to get acquainted with the theory behind these techniques before using them. To learn more about them, click the titles below!
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be