Difference between revisions of "Team:Dundee/Modeling"

Line 20: Line 20:
 
$$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$
 
$$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$
  
$$ \begin{eqnarray}
+
\schemestart $Hp$\+$\alpha$$_{H}$\arrow(--cc){<=>[$K_{a}$][$K_{d}$]}$[$$Hp$$\cdot$$\alpha$$_{H}$$]$ \arrow(@cc--dd){->[$K_{i}$]}$[$ $Hp$$\cdot$$\alpha$$_{H}$$\cdot$$\beta$$_{H}$$]$
\frac{dHp}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H}\\
+
\schemestop
\frac{d \alpha_{H}}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H} \\
+
\frac{d[Hp \cdot \alpha_{H}]}{dt}&=& K_{a} Hp \alpha_{H} - K_{d}[Hp \cdot \alpha_{H}] -  K_{i}[Hp \cdot \alpha_{H}]\\
+
\frac{d[Hp \cdot \alpha_{H} \cdot \beta_{H}]}{dt}&=&K_{i}[Hp \cdot \alpha_{H}]  
+
\end{eqnarray} $$
+
 
<br><br><br><br>
 
<br><br><br><br>
 
</div>
 
</div>

Revision as of 13:34, 10 July 2015

Modeling

The modeling part. Example:

$$ \frac{dm}{dt} = k_T - k_D \cdot m $$ $$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$ \schemestart $Hp$\+$\alpha$$_{H}$\arrow(--cc){<=>[$K_{a}$][$K_{d}$]}$[$$Hp$$\cdot$$\alpha$$_{H}$$]$ \arrow(@cc--dd){->[$K_{i}$]}$[$ $Hp$$\cdot$$\alpha$$_{H}$$\cdot$$\beta$$_{H}$$]$ \schemestop



Under construction