Difference between revisions of "Team:KU Leuven/Modeling/Top"
Line 3: | Line 3: | ||
{{KU_Leuven/modeling/top/css}} | {{KU_Leuven/modeling/top/css}} | ||
<html> | <html> | ||
+ | |||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
+ | </script> | ||
+ | <script type="text/javascript" | ||
+ | src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | </script> | ||
+ | |||
<style> | <style> | ||
Line 42: | Line 50: | ||
</video> | </video> | ||
+ | |||
+ | <body> | ||
+ | When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are | ||
+ | $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 11:48, 23 July 2015
Applications
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
Applications
The top layer model predicts cell behaviour with a discretized system of Keller-Segel equations.