Difference between revisions of "Team:KU Leuven/Modeling/Top"
Line 7: | Line 7: | ||
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
MathJax.Hub.Config({ SVG: { scale: 100 }}); | MathJax.Hub.Config({ SVG: { scale: 100 }}); | ||
− | MathJax.Hub.Config({ SVG: { Font: " | + | MathJax.Hub.Config({ SVG: { Font: "STIX-Web" }}); |
</script> | </script> |
Revision as of 13:19, 23 July 2015
1-D continuous model
The Keller segel model used is [1] : $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$ When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
References
Reference 1