Difference between revisions of "Team:KU Leuven/Modeling/Top"

Line 7: Line 7:
 
   MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 
   MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 
   MathJax.Hub.Config({  SVG: {    scale: 100  }});  
 
   MathJax.Hub.Config({  SVG: {    scale: 100  }});  
   MathJax.Hub.Config({  SVG: {    Font: "Neo-Euler"  }});
+
   MathJax.Hub.Config({  SVG: {    Font: "STIX-Web"  }});
  
 
</script>
 
</script>

Revision as of 13:19, 23 July 2015

1-D continuous model

The Keller segel model used is [1] : $\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

References

Reference 1