Difference between revisions of "Team:KU Leuven/Modeling/Top"

Line 65: Line 65:
 
     With:  </br>
 
     With:  </br>
 
     $$ X(B,H,R) = \frac{-B K_{c1} H}{K_{c2} R}. $$
 
     $$ X(B,H,R) = \frac{-B K_{c1} H}{K_{c2} R}. $$
     The model has been derived while looking at <sup> <a href="#ref1">[1] </a></sup> and <a href="#ref2">[2] </a></sup>
+
     The model has been derived while looking at <sup><a href="#ref1">[1] </a></sup> and <sup><a href="#ref2">[2] </a></sup>
  
 
   </p>
 
   </p>

Revision as of 14:03, 23 July 2015

1-D continuous model

The Keller segel model type model we used is: $$\frac{\partial A}{\partial t} = D_a \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_{p}}),$$ $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (X(B,H,R) \bigtriangledown R)+ k_B B(1 - \frac{B}{k_{p}}), $$ $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B + k_r A - k_{lossH} R $$ $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B + k_h A - k_{lossR} H . $$ With:
$$ X(B,H,R) = \frac{-B K_{c1} H}{K_{c2} R}. $$ The model has been derived while looking at [1] and [2]

References

Spatio-Temporal Patterns Generated by Salmonella typhimurium, D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. 0.Budrene,l and H. C.Berg , Biophysical Journal Volume 68 May 1995 2181-2189

Hybrid modelling of individual movement and collective behaviour, B. Franz and R. Erban, DISPERSAL, INDIVIDUAL MOVEMENT AND SPATIAL ECOLOGY: A MATHEMATICAL PERSPECTIVE Book Series: Lecture Notes in Mathematics Volume: 2071 Pages: 129-157