Difference between revisions of "Team:Aalto-Helsinki/Modeling micelle"
m |
(changed rad to sr, small changes to text.) |
||
Line 77: | Line 77: | ||
<p style="color:gray">--Picture of the pathway here, CAR, ADO and butyraldehyde highlighted to clarify what we are talking about.--</p> | <p style="color:gray">--Picture of the pathway here, CAR, ADO and butyraldehyde highlighted to clarify what we are talking about.--</p> | ||
− | <p>The product of second to last enzyme of our pathway, butyraldehyde, is toxic to the cell. Because of that and about 15 naturally occurring butyraldehyde-consuming enzymes in the cell it is essential for the propane production that Butyraldehyde goes swiftly to the enzyme we want it to go to, ADO. As the solution to this our team wanted to put CAR and ADO close together in a micelle so butyraldehyde would | + | <p>The product of second to last enzyme of our pathway, butyraldehyde, is toxic to the cell. Because of that and about 15 naturally occurring butyraldehyde-consuming enzymes in the cell it is essential for the propane production that Butyraldehyde goes swiftly to the enzyme we want it to go to, ADO. As the solution to this our team wanted to put CAR and ADO close together in a micelle so butyraldehyde would go to ADO with a higher probability than to any other enzyme in the cell.</p> |
<p>We have made a <a href="https://2015.igem.org/Team:Aalto-Helsinki/Modeling_synergy">model of effectiveness of having enzymes close together</a>, but our team also wanted to know if the micelle structure was possible in the first place. We know (references as links for this statement!) that it is possible to form the micelle without any proteins at the end and with green fluorecent protein (Gfp), but could CAR and ADO be part of this kind of structure? </p> | <p>We have made a <a href="https://2015.igem.org/Team:Aalto-Helsinki/Modeling_synergy">model of effectiveness of having enzymes close together</a>, but our team also wanted to know if the micelle structure was possible in the first place. We know (references as links for this statement!) that it is possible to form the micelle without any proteins at the end and with green fluorecent protein (Gfp), but could CAR and ADO be part of this kind of structure? </p> | ||
Line 91: | Line 91: | ||
<h3 id="micellestructure">Micelle structure</h3> | <h3 id="micellestructure">Micelle structure</h3> | ||
− | <p>The micelle is formed by amphiphilic proteins that have both hydrophilic and hydrophobic parts. At the end of hydrophilic part there is short protein, a linker that attaches CAR or ADO to the amphiphilic part.</p> | + | <p>The micelle is formed by amphiphilic proteins that have both hydrophilic and hydrophobic parts. At the end of hydrophilic part there is a short protein, a linker that attaches CAR or ADO to the amphiphilic part.</p> |
<figure style="float:left;"> | <figure style="float:left;"> | ||
<img src="https://static.igem.org/mediawiki/2015/b/bd/Aalto-Helsinki_linker_structure.png" style="width:200px;margin-top:40px;" /> | <img src="https://static.igem.org/mediawiki/2015/b/bd/Aalto-Helsinki_linker_structure.png" style="width:200px;margin-top:40px;" /> | ||
− | <figcaption><p style="font-size:13px;">Image | + | <figcaption><p style="font-size:13px;">Image from structure <br/>prediction software</p></figcaption> |
</figure> | </figure> | ||
− | <p>Amphiphilic proteins are 10 nm long, 5 nm for both hydrophilic and hydrophobic parts. (Here where we got amphiphilic proteins sizes.) The linker (here link for more info about this. Structure and such, does lab have that somewhere?) consists of eight amino acids, and for each | + | <p>Amphiphilic proteins are 10 nm long, 5 nm for both hydrophilic and hydrophobic parts. (Here where we got amphiphilic proteins sizes.) The linker (here link for more info about this. Structure and such, does lab have that somewhere?) consists of eight amino acids, and for each amino acid, the maximum lenght is 0.38nm. From this we can calculate that at most the length of one linker is 2.8 nm. If the linker would form an α-helical structure, then the length for one amino acid would be about 0.15nm so then one linker would be 1,2 nm long. (we need some source for the Å-lengths) However, we can estimate that the linkers are straight, since running the structure in <a href="http://mobyle.rpbs.univ-paris-diderot.fr">peptide structure prediction software</a> doesn't yield strong folding or helical structure. Thus we predict our linker lenght to be 2.8nm. CAR uses two subsequent linkers whereas ADO uses one. </p> |
<p>One problem we are facing here is that we need some sort of approximations for the enzymes’ radii. Since we don’t know the exact three-dimensional structure of the proteins, we approximated the enzymes as perfect spheres. | <p>One problem we are facing here is that we need some sort of approximations for the enzymes’ radii. Since we don’t know the exact three-dimensional structure of the proteins, we approximated the enzymes as perfect spheres. | ||
Line 134: | Line 134: | ||
\[ \Omega = 2\pi \left( 1-\cos(\theta) \right), \] | \[ \Omega = 2\pi \left( 1-\cos(\theta) \right), \] | ||
where \( \theta \) is half of the apex angle. So for CAR we get | where \( \theta \) is half of the apex angle. So for CAR we get | ||
− | \[ \Omega_{cone\text{-}CAR} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{3.5}{14.1}\right)\right) \right) \approx 0.185 \text{ | + | \[ \Omega_{cone\text{-}CAR} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{3.5}{14.1}\right)\right) \right) \approx 0.185 \text{ sr} \] |
and for ADO | and for ADO | ||
− | \[ \Omega_{cone\text{-}ADO} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{2}{9.8}\right)\right) \right) \approx 0.127 \text{ | + | \[ \Omega_{cone\text{-}ADO} = 2\pi \left( 1-\cos\left( \arctan\left(\frac{2}{9.8}\right)\right) \right) \approx 0.127 \text{ sr}.\]</p> |
<p style="color:gray">--picture of this cone-like structure? is it needed or can this be understood without it?--</p> | <p style="color:gray">--picture of this cone-like structure? is it needed or can this be understood without it?--</p> | ||
Line 147: | Line 147: | ||
<p>The solid angle \( \Omega\) for this kind of structure can be calculated by | <p>The solid angle \( \Omega\) for this kind of structure can be calculated by | ||
− | \[\Omega = 4\arcsin\left( \sin\left(\theta\right) ^2 \right),\] where \( \theta\) is again half of the apex angle. This yields us \[\Omega_{pyramid\text{-}CAR} = 4\arcsin\left( \sin\left(\arctan\left( \frac{3.5}{14.1} \right) \right) ^2 \right) \approx 0.232 \text{ | + | \[\Omega = 4\arcsin\left( \sin\left(\theta\right) ^2 \right),\] where \( \theta\) is again half of the apex angle. This yields us \[\Omega_{pyramid\text{-}CAR} = 4\arcsin\left( \sin\left(\arctan\left( \frac{3.5}{14.1} \right) \right) ^2 \right) \approx 0.232 \text{ sr}\] |
and | and | ||
− | \[\Omega_{pyramid\text{-}ADO} = 4\arcsin\left( \sin\left(\arctan\left( \frac{2}{9.8} \right) \right) ^2 \right) \approx 0.16 \text{ | + | \[\Omega_{pyramid\text{-}ADO} = 4\arcsin\left( \sin\left(\arctan\left( \frac{2}{9.8} \right) \right) ^2 \right) \approx 0.16 \text{ sr}.\] </p> |
<p>By this method of calculation we could get at most 32 of both fusion proteins in one micelle.</p> | <p>By this method of calculation we could get at most 32 of both fusion proteins in one micelle.</p> | ||
Line 164: | Line 164: | ||
<p>We can think that this structure consists of a single cone whose centre is the centre of CAR fusion protein and the side goes along ADO fusion protein. We can further take some of the empty areas into account by thinking this as pyramid instead of cone. This yields us | <p>We can think that this structure consists of a single cone whose centre is the centre of CAR fusion protein and the side goes along ADO fusion protein. We can further take some of the empty areas into account by thinking this as pyramid instead of cone. This yields us | ||
− | \[\Omega_{CAR\&ADO} = 4\arcsin\left( \sin\left( \arccos\left( \frac{14.1^2+9.8^2-5.5^2}{2\cdot14.1\cdot 9.8} \right) \right) ^2 \right) \approx 0.3336 \text{ | + | \[\Omega_{CAR\&ADO} = 4\arcsin\left( \sin\left( \arccos\left( \frac{14.1^2+9.8^2-5.5^2}{2\cdot14.1\cdot 9.8} \right) \right) ^2 \right) \approx 0.3336 \text{ sr}.\]</p> |
<p>This means that about 37 of these pyramid stuctures fit in one micelle, meaning 37 CAR enzymes per micelle. For ADO we can approximate that there are about twice as many of them than CAR fusion proteins (this is justified in infinite field so we approximate with it here), so the amount of ADO would be 74 and the whole amount of fusion proteins in this micelle 111. Since there is probably even more efficient way of packing these proteins in one micelle, the real upper bound might be even larger.</p> | <p>This means that about 37 of these pyramid stuctures fit in one micelle, meaning 37 CAR enzymes per micelle. For ADO we can approximate that there are about twice as many of them than CAR fusion proteins (this is justified in infinite field so we approximate with it here), so the amount of ADO would be 74 and the whole amount of fusion proteins in this micelle 111. Since there is probably even more efficient way of packing these proteins in one micelle, the real upper bound might be even larger.</p> | ||
Line 182: | Line 182: | ||
<p>There are some assumptions of the model that might have some effect on its accuracy. We have assumed that the amphiphilic protein could be approximated by just its length, and it has no width that could have any effect on our calculations. It is also to be noted that we didn’t even aim to be accurate in assembly of ADO and CAR in ball surface. The best possible formation is very hard to find in this situation and there wasn’t any need to be that accurate in our calculations. Further, since we don't know what shapes the enzymes are, we have estimated them as spheres.</p> | <p>There are some assumptions of the model that might have some effect on its accuracy. We have assumed that the amphiphilic protein could be approximated by just its length, and it has no width that could have any effect on our calculations. It is also to be noted that we didn’t even aim to be accurate in assembly of ADO and CAR in ball surface. The best possible formation is very hard to find in this situation and there wasn’t any need to be that accurate in our calculations. Further, since we don't know what shapes the enzymes are, we have estimated them as spheres.</p> | ||
− | <p>Even though our model seems to prove that the formation of these micelles is possible, there are lots of things we couldn’t take into account that might have effects on micelle formation and make it impossible. We didn't consider any forces that might | + | <p>Even though our model seems to prove that the formation of these micelles is possible, there are lots of things we couldn’t take into account that might have effects on micelle formation and make it impossible. We didn't consider any forces that might form between our proteins, thus rendering micelles impossible. It might well be that even though this is geometrically possible in reality micelles can not form. However we feel that taking these things into account is not worth the effort especially when mere geometrical model could predict things so well.</p> |
Revision as of 13:20, 11 August 2015