Difference between revisions of "Team:Bordeaux/Description"
Line 59: | Line 59: | ||
<div class="col-lg-5"> | <div class="col-lg-5"> | ||
− | <p align="justify"> Before starting the project, we took a few weeks to decide which host organism we would use and how they could be useful. To begin with we looked at three different organisms: <i> Escherichia coli </i>, <i> Bacillus subtilis </i> and <i> Saccharomyces cerevisiae </i> and compared their glucan metabolic pathways. We rapidly eliminated <i> Bacillus subtilis </i> from our possible hosts due to it's lack of enzymes involved in the metabolic pathway of beta 1,3 glucans. However, we found that yeast naturally produces Curdlan in it's cell wall, like <i>Agrobacterium</i> . Furthermore, <i> Escherichia coli </i> is only missing one enzyme to synthethize Curdlan. We therefore concluded that we could keep these two organisms: one where we would overexpress the beta 1,3 glucan | + | <p align="justify"> Before starting the project, we took a few weeks to decide which host organism we would use and how they could be useful. To begin with we looked at three different organisms: <i> Escherichia coli </i>, <i> Bacillus subtilis </i> and <i> Saccharomyces cerevisiae </i> and compared their glucan metabolic pathways. We rapidly eliminated <i> Bacillus subtilis </i> from our possible hosts due to it's lack of enzymes involved in the metabolic pathway of beta 1,3 glucans. However, we found that yeast naturally produces Curdlan in it's cell wall, like <i>Agrobacterium</i> . Furthermore, <i> Escherichia coli </i> is only missing one enzyme (the Beta glucan synthase) to synthethize Curdlan. We therefore concluded that we could keep these two organisms: one where we would overexpress the beta 1,3 glucan synthase using a constititive promoter and one where we would insert the ability to create curdlan by adding the enzyme that is needed. </p> |
<br> | <br> | ||
</div> | </div> |
Revision as of 20:37, 11 August 2015