Difference between revisions of "Team:HKUST-Rice/Application"
Line 34: | Line 34: | ||
</h6> | </h6> | ||
<h6>We quickly realized that in order to deploy our NPK sensors across multiple strains of soil bacteria, we would need to build the genetic circuitry on broad-host range plasmids. Before putting our sensors into soil bacteria, we decided to show proof-of-concept by using a conjugation plasmid with an RP4 transfer system, methyl halide transferase (MHT), green fluorescent protein (GFP), and a chloramphenicol selectable marker. The MHT and GFP serve as gas and visual outputs that make the system versatile for different environments. We were cognizant of the fact that most soil is darkly colored, and therefore, GFP would not be easily seen. Consequently, we hypothesize that a gas marker might be more applicable in future use.</h6> | <h6>We quickly realized that in order to deploy our NPK sensors across multiple strains of soil bacteria, we would need to build the genetic circuitry on broad-host range plasmids. Before putting our sensors into soil bacteria, we decided to show proof-of-concept by using a conjugation plasmid with an RP4 transfer system, methyl halide transferase (MHT), green fluorescent protein (GFP), and a chloramphenicol selectable marker. The MHT and GFP serve as gas and visual outputs that make the system versatile for different environments. We were cognizant of the fact that most soil is darkly colored, and therefore, GFP would not be easily seen. Consequently, we hypothesize that a gas marker might be more applicable in future use.</h6> | ||
+ | <h5><i>insert image here</i></h5> | ||
+ | <h6>*0040 = BBa_E0040 GFP</h6> | ||
+ | <h6> | ||
+ | We then began doing proof-of-concept experiments to transform our broad-host range plasmid containing GFP into two strains of gram-negative soil bacteria: Rhizobia, a nitrogen-fixing microbe, was conjugated to E. coli S17, which along with the conjugation plasmid, provided all the genes necessary to transfer the GFP containing plasmid into the soil bacteria. Additionally, Azotobacter vinelandii, another nitrogen-fixing bacteria, was transformed by electroporation using the conjugation plasmid. Currently, we see that the conjugation of Rhizobia with the E. coli worked since colonies grew on the agarose plates with streptomycin and chloramphenicol antibiotics. The streptomycin ensured that only the Rhizobia grew on the plates since the E. coli were not resistant to streptomycin, and that only Rhizobia with the plasmids grew. We hope to confirm our findings further by amplifying the nitrogenase gene, only present in Rhizobia. Alternative studies utilizing the plate reader will analyze the fluorescence of the GFP. </h6> | ||
+ | <h5><i>[margaret] and any data we get(put azobacter pics in here )<i></h5> | ||
+ | <h6> | ||
+ | While this application of our NPK sensors is still very much in the initial stages of development, we are very excited by the idea of nutrient-controlled biofertilizer bacteria. This project fully utilizes the unique biocomputing power built into bacteria and we hope to continue developing it future years. We envision a day when we resolve biosafety issues and farmers will no longer have to test their soil, determine nutrient deficiencies, and correct them with fertilizers. Instead, our genetically modified soil-bacteria living with the crops will continuously test and replenish or destroy nitrogen, phosphate, and potassium, depending on the specific requirements of the crop. This system would not only make farming easier, by eliminating the need to add fertilizer, it would prevent runoff and have a major positive environmental impact.</h6> | ||
+ | |||
+ | |||
</body> | </body> | ||
<html> | <html> |
Revision as of 22:21, 2 September 2015