Difference between revisions of "Team:Minnesota/team"

Line 405: Line 405:
 
                 <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c2/MOP-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
                 <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c2/MOP-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
               <span class="caption scale-caption" style="text-align:justify">
 
               <span class="caption scale-caption" style="text-align:justify">
                           <p><b style="font-size:16px">Mop</b><br><br> Mopping up a toxin (microcystin) by engineering a bacterium to produce the human PP1 protein, the protein to which microcystin binds.</p>
+
                           <p><b style="font-size:16px">Experiment</b><br><br> Developing the 2A viral tag system to improve eukaryotic biosynthesis. </p>
 
                 </span>
 
                 </span>
 
               </div>
 
               </div>
Line 418: Line 418:
 
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c3/DETECTOR-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c3/DETECTOR-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
               <span class="caption scale-caption" style="text-align:justify">
 
               <span class="caption scale-caption" style="text-align:justify">
                           <p><b style="font-size:16px;">Detector</b><br><br> Detecting microcystin by manipulation of the <i>E. coli</i> osmoregulator EnvZ.</p>
+
                           <p><b style="font-size:16px;">Computation</b><br><br> Creating computational tools to streamline biosynthesis. <i>E. coli</i> osmoregulator EnvZ.</p>
 
               </span>
 
               </span>
 
             </div>
 
             </div>
Line 431: Line 431:
 
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/9/9f/MOPTOPUS-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/9/9f/MOPTOPUS-ICO-Dundee.jpg" style="width:220px;height:220px;">
 
               <span class="caption scale-caption" style="text-align:justify">
 
               <span class="caption scale-caption" style="text-align:justify">
                           <p><b style="font-size:16px;">Moptopus</b><br><br>  An electronic sensing device that provides a platform for toxin detection. It relates a range of environmental conditions to algal bloom formation and toxicity.</p>
+
                           <p><b style="font-size:16px;">Linguistics</b><br><br>  Objectively studying the way to talk about biotechnology.</p>
 
               </span>
 
               </span>
 
             </div>
 
             </div>
Line 445: Line 445:
 
               <span class="caption scale-caption" style="text-align:justify">
 
               <span class="caption scale-caption" style="text-align:justify">
  
                           <p><b style="font-size:16px;">Human Practices</b><br><br>This project has been carried out in collaboration with the community. By informing, listening and responding to their input, our project is based around community defined need, and is not merely a technical exercise. </p>
+
                           <p><b style="font-size:16px;">Future Directions</b><br><br> Considerations for the future directions of iGEM and the synthetic biology community. </p>
 
               </span>
 
               </span>
 
             </div>
 
             </div>

Revision as of 23:52, 2 September 2015

Team:Dundee - 2013.igem.org

 

Team:Dundee

From 2013.igem.org

iGEM Dundee 2013 · ToxiMop

Targeting a Deadly Toxin

Explosions in the population of cyanobacteria can produce toxic algal blooms. Microcystin-LR the most potent and common algal bloom toxin, binds Protein Phosphatase 1. The average cyanobacteria infested lake in America contains over 1000 times the Microcystin safe drinking water limit set by the World Health Organisation.

Concerned by a harmful algal bloom in the local community, we used synthetic biology to target the toxin. We exploited the mechanism of Microcystin's toxicity to develop our Mop; by expressing Protein Phosphatase 1 we can mop up Microcystin. The interaction was also the basis for developing a biological Detector. To deploy our Detector and to consider the root causes of algal blooms we created the electronic Moptopus. It sits on a lake and monitors conditions relevant to cyanobacterial growth to help predict future blooms.