Difference between revisions of "Team:Bordeaux/Problem"
Line 96: | Line 96: | ||
<br> | <br> | ||
− | <p align="justify" style="text-indent: 3vw;"> Recently, more models and devices designed to be used by individual growers measure temperature, humidity and leaf wetness and provide treatment recommendations based on algorithms similar to the Goidànich model. This general algorithm defined as the 3–10 spray strategy, is prescribed when the average temperature is above 10°C, more than 10 mm of rain have fallen within 24 h and shoot length in the vineyard is at least 10 cm. Despite evident imprecision due to the strict parameters, this general model can reliably predict the first risk period and recommend thereafter a treatment schedule that will allow growers to prevent development of severe downy mildew in vineyards. The weakness of this type of model is that the number of recommended pesticide sprays is usually greater than what is needed to avoid an epidemic, particularly at the beginning of the season. In 2006, Swiss researchers applied a concept based on a tolerance threshold for Downy mildew under the particular climatic conditions of southern Switzerland and were able to eliminate half of the recommended treatments. (Jermini et al., 2006). This paradigm change, from a focus on the pathogen and the disease toward a threshold concept, requires detailed knowledge of the host and its relationship with the environment and human activities but opens the path for a new era of pesticide applications. However, these are highly complex interactions and there is little available data describing them. The information that is available is heavily biased by site, year and cultivar factors, and so cannot be readily used for simulation and modeling activities. [1] More results like | + | <p align="justify" style="text-indent: 3vw;"> Recently, more <b> models </b> and devices designed to be used by individual growers measure temperature, humidity and leaf wetness and provide <b>treatment recommendations based on algorithms</b> similar to the Goidànich model. This general algorithm defined as the 3–10 spray strategy, is prescribed when the average temperature is above 10°C, more than 10 mm of rain have fallen within 24 h and shoot length in the vineyard is at least 10 cm. Despite evident imprecision due to the strict parameters, <b>this general model can reliably predict the first risk period</b> and recommend thereafter a <b>treatment schedule</b> that will allow growers to prevent development of severe downy mildew in vineyards. </p> |
+ | |||
+ | |||
+ | <p align="justify" style="text-indent: 3vw;"> The weakness of this type of model is that </b>the number of recommended pesticide sprays is usually greater than what is needed to avoid an epidemic</b>, particularly at the beginning of the season. In 2006, Swiss researchers applied a concept based on a tolerance threshold for Downy mildew under the particular climatic conditions of southern Switzerland and were able to eliminate half of the recommended treatments. (Jermini et al., 2006). This paradigm change, from a focus on the pathogen and the disease toward a threshold concept, requires detailed knowledge of the host and its relationship with the environment and human activities but opens the path for a new era of pesticide applications. However, these are <b>highly complex interactions</b> and there is <b>little available data</b> describing them. The information that is available is <b>heavily biased</b> by site, year and cultivar factors, and so cannot be readily used for simulation and modeling activities. [1] More results like these could cause a significant reduction of pesticide use in the regions. </p> | ||
</div> | </div> | ||
Revision as of 17:37, 4 September 2015