Difference between revisions of "Team:Bordeaux/Description"
Line 109: | Line 109: | ||
<p align="justify" style="text-indent: 3vw;"> Firstly, we decided to produce curdlan with <b><i> Escherichia coli </i></b>, because <i> Agrobacterium </i> and it are Gram negative bacteria and have a lot of <b>membrane similarity</b>. Moreover <i> Escherichia coli </i> is a simple bacteria that can be <b>grown and cultured easily and inexpensively</b> in a laboratory unlike <i> Agrobacterium </i>. </p> | <p align="justify" style="text-indent: 3vw;"> Firstly, we decided to produce curdlan with <b><i> Escherichia coli </i></b>, because <i> Agrobacterium </i> and it are Gram negative bacteria and have a lot of <b>membrane similarity</b>. Moreover <i> Escherichia coli </i> is a simple bacteria that can be <b>grown and cultured easily and inexpensively</b> in a laboratory unlike <i> Agrobacterium </i>. </p> | ||
− | <p align="justify" style="text-indent: 3vw;"> Since <i> E. coli </i> naturally produces UDP Glucose (metabolite number 3 on Figure 5), adding the β 1,3 glucan synthase would theoretically allow curdlan production. We therefore inserted the three genes which code for the β glucan synthase and metabolic transporters in <i> Agrobacterium </i> (crdASC) into <i> E. coli </i>. However, since our gene sequences for crdA, crdS, and crdC originally come from <i> Agrobacterium </i> we decided to <b>optimize our gene codons</b> for <i> E. coli </i> with IDT's codon optimization tool in order to make sure that our gene would correctly be expressed. Furthermore we decided to place the genes under an easier control than N-starvation by using a <b>promoter</b> which is <b>activated in stationary phase</b>. (osmY, <a href= "http://parts.igem.org/Part:BBa_J45992" style=" color: # | + | <p align="justify" style="text-indent: 3vw;"> Since <i> E. coli </i> naturally produces UDP Glucose (metabolite number 3 on Figure 5), adding the β 1,3 glucan synthase would theoretically allow curdlan production. We therefore inserted the three genes which code for the β glucan synthase and metabolic transporters in <i> Agrobacterium </i> (crdASC) into <i> E. coli </i>. However, since our gene sequences for crdA, crdS, and crdC originally come from <i> Agrobacterium </i> we decided to <b>optimize our gene codons</b> for <i> E. coli </i> with IDT's codon optimization tool in order to make sure that our gene would correctly be expressed. Furthermore we decided to place the genes under an easier control than N-starvation by using a <b>promoter</b> which is <b>activated in stationary phase</b>. (osmY, <a href= "http://parts.igem.org/Part:BBa_J45992" style=" color: #8b008b;"> BBa_J45992 </a> characterized by MIT in 2006). This should theoretically allow maximum production in simple conditions. </p> |
<img style= "width:30vw; height:8vw; align:center;" src= "https://static.igem.org/mediawiki/2015/7/79/Bordeaux_Biobrick.jpg"> | <img style= "width:30vw; height:8vw; align:center;" src= "https://static.igem.org/mediawiki/2015/7/79/Bordeaux_Biobrick.jpg"> | ||
Line 214: | Line 214: | ||
<br> <br> <br> | <br> <br> <br> | ||
− | <h6> <a href= "https://2015.igem.org/Team:Bordeaux/Problem" style=" color: # | + | <h6> <a href= "https://2015.igem.org/Team:Bordeaux/Problem" style=" color: #8b008b;"> Problem ☚ </a> Previous Page . Next Page <a href= "https://2015.igem.org/Team:Bordeaux/Results" style=" color: #8b008b;"> ☛ Results </h6> |
</div> | </div> |
Revision as of 22:32, 4 September 2015