Difference between revisions of "Team:Tuebingen/Modeling"

Line 5: Line 5:
 
dias = ['Overview','The Model', 'Theory','Results','Conclusion','Bibliography'];
 
dias = ['Overview','The Model', 'Theory','Results','Conclusion','Bibliography'];
 
</script>
 
</script>
 +
<script type="text/x-mathjax-config"> MathJax.Hub.Config({
 +
MMLorHTML: { prefer: "HTML" },
 +
tex2jax: {
 +
displayMath: [['\\[', '\\]']],
 +
inlineMath: [['\\(', '\\)']],
 +
processEscapes: true
 +
},
 +
TeX: { extensions: ['enclose.js'] }
 +
});
 +
</script>
 
<script type="text/javascript"
 
<script type="text/javascript"
 
   src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
   src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
Line 11: Line 21:
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->
 
<div id="dia0" class="dia">
 
<div id="dia0" class="dia">
<p>The objective of our project was to build a population-encoding <em>galactose</em> sensor with the ability to measure and store the concentration level at one specific time-point. The temporal selectivity of the sensor was achieved by light induced conformation changes of <strong>Dronpa</strong>, which is a monomeric fluorescence protein. Its fluorescence is activated by violet light (400nm) and deactivated by cyan light (500nm). Dronpa tetramerizes in the fluorescing 'ON'-state. [Zhou2012]</p>
+
<p>The objective of our project was to build a population-encoding <em>galactose</em> sensor with the ability of measuring and storing the concentration level at one specific time-point. The temporal selectivity of the sensor was achieved by light-induced conformation changes of <strong>Dronpa</strong>, which is a monomeric fluorescence protein. Its fluorescence is activated by violet light (400nm) and deactivated by cyan light (500nm). Dronpa tetramerizes in the fluorescing 'ON'-state. [Zhou2012]</p>
<p>We utilized Dronpa's behavior to introduce light-dependent regulation to <strong>Cre</strong> monomers, which tetramerize to a <strong>recombinase complex</strong>. In our chassis, the Cre recombinase deletes <strong>RFP</strong>, which prevents the transcription of a <em>luciferase</em> reporter. The mechanism of our sensor is the galactose dependent expression of Dronpa (in the ON state), which after the exposure to 500nm light no longer inhibits the recombinase. Consequentially, a Cre-Lox recombination deletes RFP, which activates the reporter.</p>
+
<p>We utilized Dronpas behavior to introduce light-dependent regulation to <strong>Cre</strong> monomers, which tetramerize to a <strong>recombinase complex</strong>. In our chassis, the Cre recombinase deletes <strong>RFP</strong>, which prevents the transcription of a <em>luciferase</em> reporter. The mechanism of our sensor is the galactose dependent expression of Dronpa (in the ON state), which after the exposure to 500nm light no longer inhibits the recombinase. Consequentially, a Cre-Lox recombination deletes RFP, which activates the reporter.</p>
 
<p><strong>TODO</strong> Cre citation</p>
 
<p><strong>TODO</strong> Cre citation</p>
 
<p>A recombinase event could be considered a stochastic process, that depends on the Cre concentration and on the time span in which it was active. Because the concentration of Dronpa and of the linked Cre is determined by the galactose concentration, the change in luciferase activity in a population is a measure of the galactose concentration at the time point of 500nm light exposure.</p>
 
<p>A recombinase event could be considered a stochastic process, that depends on the Cre concentration and on the time span in which it was active. Because the concentration of Dronpa and of the linked Cre is determined by the galactose concentration, the change in luciferase activity in a population is a measure of the galactose concentration at the time point of 500nm light exposure.</p>
Line 23: Line 33:
 
<div id="dia1" class="dia">
 
<div id="dia1" class="dia">
 
<div class="figure">
 
<div class="figure">
<img src="model_sys.png" alt="The dynamic species and their interactions in the model" />
+
<img src="../wiki/images/1/13/Model_sys.png" alt="The dynamic species and their interactions in the model" />
 
<p class="caption">The dynamic species and their interactions in the model</p>
 
<p class="caption">The dynamic species and their interactions in the model</p>
 
</div>
 
</div>
<p>Our model is based on the constructs <strong>pGAL - NLS - Dronpa - Cre</strong> and <strong>PADH - RFP - Luciferase</strong>. The variable parts of the model are depicted in the upper diagram. We assume PADH mediated expression to be constant.</p>
+
<p>Our model is based on the constructs <strong>pGAL - NLS - Dronpa - Cre</strong> and <strong>PADH - RFP - Luciferase</strong>. Our model designs the conformational changes in Dronpa by light signals. Here, we adopt the common practice of <em>assuming the overall concentration of proteins to be constant over the short time span of light exposure</em>.</p>
 
<p>Abbreviations for the genetic elements:</p>
 
<p>Abbreviations for the genetic elements:</p>
 
<table>
 
<table>
Line 50: Line 60:
 
<tr class="even">
 
<tr class="even">
 
<td align="left">Cre</td>
 
<td align="left">Cre</td>
<td align="left">Cre monomere</td>
+
<td align="left">Cre-Recombinase monomere</td>
 
</tr>
 
</tr>
 
<tr class="odd">
 
<tr class="odd">
 
<td align="left">PADH</td>
 
<td align="left">PADH</td>
<td align="left">Promotor with constant expression</td>
+
<td align="left">Promotor <em>with constant expression</em></td>
 
</tr>
 
</tr>
 
<tr class="even">
 
<tr class="even">
 
<td align="left">RFP</td>
 
<td align="left">RFP</td>
<td align="left">Used</td>
+
<td align="left">Inhibits reporter expression</td>
 
</tr>
 
</tr>
 
<tr class="odd">
 
<tr class="odd">
Line 68: Line 78:
 
<p>We described the dynamics of the system with the following equations.</p>
 
<p>We described the dynamics of the system with the following equations.</p>
 
<blockquote>
 
<blockquote>
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]}  {\partial t}  &amp;=&amp; \textrm{production}  + \left(\textrm{Off}\rightarrow\textrm{On}\right) \\ &amp; &amp; - \left(\textrm{On}\rightarrow\textrm{Off}\right) - \textrm{decay} \\  &amp; &amp; \\  &amp;=&amp; {V_m} : \left({\left(\frac {K_m} {[GAL]}\right)^n + 1}\right) \\  &amp; &amp; + \alpha \cdot \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right] \cdot [400nm] \\  &amp; &amp; - \beta \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \cdot [500nm] \\  &amp; &amp; - \frac{\ln(2)} {\tau} \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \\ \end{eqnarray}\)</span>
+
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]}  {\partial t}  &amp;=&amp; \left(\textrm{Off}\rightarrow\textrm{On}\right)  - \left(\textrm{On}\rightarrow\textrm{Off}\right)\\  &amp; &amp; \\  &amp;=&amp; \alpha \cdot \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right] \cdot [400nm] \\  &amp; &amp; - \beta \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \cdot [500nm] \end{eqnarray}\)</span>
 
</blockquote>
 
</blockquote>
 
<blockquote>
 
<blockquote>
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right]}  {\partial t}  &amp;=&amp; + \left(\textrm{On}\rightarrow\textrm{Off}\right)  - \left(\textrm{Off}\rightarrow\textrm{On}\right) - \textrm{decay} \\ &amp; &amp; \\  &amp;=&amp;  \beta \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \cdot [500nm] \\  &amp; &amp; - \alpha \cdot \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right] \cdot [400nm] \\  &amp; &amp; - \frac{\ln(2)} {\tau} \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \\ \end{eqnarray}\)</span>
+
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right]}  {\partial t}  &amp;=&amp; \left(\textrm{On}\rightarrow\textrm{Off}\right)  - \left(\textrm{Off}\rightarrow\textrm{On}\right)  &amp; &amp; \\  &amp;=&amp;  \beta \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \cdot [500nm] \\  &amp; &amp; - \alpha \cdot \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right] \cdot [400nm] \end{eqnarray}\)</span>
 
</blockquote>
 
</blockquote>
 
<table>
 
<table>
Line 83: Line 93:
 
<tbody>
 
<tbody>
 
<tr class="odd">
 
<tr class="odd">
<td align="left"><span class="math inline">\(V_m\)</span></td>
 
<td align="left"><span class="math inline">\(\frac {M}{sec}\)</span></td>
 
<td align="left">Max. production-rate of Dronpa</td>
 
</tr>
 
<tr class="even">
 
<td align="left"><span class="math inline">\(K_m\)</span></td>
 
<td align="left"><span class="math inline">\(M\)</span></td>
 
<td align="left">Steepness of Hill function</td>
 
</tr>
 
<tr class="odd">
 
<td align="left"><span class="math inline">\(n\)</span></td>
 
<td align="left">none</td>
 
<td align="left">Hill coefficient</td>
 
</tr>
 
<tr class="even">
 
 
<td align="left"><span class="math inline">\([500nm]\)</span>, <span class="math inline">\([400nm]\)</span></td>
 
<td align="left"><span class="math inline">\([500nm]\)</span>, <span class="math inline">\([400nm]\)</span></td>
<td align="left"><span class="math inline">\($\frac{photons}{sec}\)</span></td>
+
<td align="left"><span class="math inline">\(\frac{photons}{sec}\)</span></td>
 
<td align="left">Light intensities</td>
 
<td align="left">Light intensities</td>
 
</tr>
 
</tr>
<tr class="odd">
+
<tr class="even">
 
<td align="left"><span class="math inline">\(\alpha\)</span></td>
 
<td align="left"><span class="math inline">\(\alpha\)</span></td>
 
<td align="left"><span class="math inline">\(\frac{1}{photons}\)</span></td>
 
<td align="left"><span class="math inline">\(\frac{1}{photons}\)</span></td>
 
<td align="left">Scaling factor</td>
 
<td align="left">Scaling factor</td>
 
</tr>
 
</tr>
<tr class="even">
+
<tr class="odd">
 
<td align="left"><span class="math inline">\(\beta\)</span></td>
 
<td align="left"><span class="math inline">\(\beta\)</span></td>
 
<td align="left"><span class="math inline">\(\frac{1}{photons}\)</span></td>
 
<td align="left"><span class="math inline">\(\frac{1}{photons}\)</span></td>
 
<td align="left">Scaling factor</td>
 
<td align="left">Scaling factor</td>
</tr>
 
<tr class="odd">
 
<td align="left"><span class="math inline">\(\tau\)</span></td>
 
<td align="left"><span class="math inline">\(sec\)</span></td>
 
<td align="left">Half-life time of Dronpa</td>
 
 
</tr>
 
</tr>
 
</tbody>
 
</tbody>
 
</table>
 
</table>
 
<p>Let <span class="math inline">\(A = \int\  [\textrm{Dronpa}_\textrm{Off}\textrm{-Cre}]_t\ dt\)</span> be the are under <span class="math inline">\(\textrm{Dronpa}_\textrm{Off}\)</span> concentration curve.</p>
 
<p>Let <span class="math inline">\(A = \int\  [\textrm{Dronpa}_\textrm{Off}\textrm{-Cre}]_t\ dt\)</span> be the are under <span class="math inline">\(\textrm{Dronpa}_\textrm{Off}\)</span> concentration curve.</p>
<p>The area <span class="math inline">\(A\)</span> describes how much and how long Cre was active. As such it could be used as a measure for the likelihodd of a recombinase event occuring in a single cell. We found an invertible function <span class="math inline">\(f: R^+ \rightarrow [0, 1]\)</span> that describes the probability of the recombinase occuring in a single cell dependent on the are <span class="math inline">\(A\)</span> (<span class="math inline">\(p=f(A)\)</span>).</p>
+
<p>The area <span class="math inline">\(A\)</span> describes how much and how long Cre was active. As such it could be used as a measure for the likelihodd of a recombinase event occuring in a single cell. We found an invertible function <span class="math inline">\(f: R^+ \rightarrow [0, 1]\)</span> that describes the probability of the recombinase occuring in a single cell dependent on the are <span class="math inline">\(A\)</span>.</p>
<p>According to the Binomial distribution, if a tube contained <span class="math inline">\(N\)</span> cells that had no reporter activity, the expected number of recombinase events after light exposure is <span class="math inline">\(X=N \cdot f(A)\)</span>. As we assumed constant PADH expression, each of these <span class="math inline">\(X\)</span> cells will have about the same luciferase concentration. Therefore we can predict the change in luciferase luminescence <span class="math inline">\(\Delta I\)</span> do be proportional to <span class="math inline">\(X\)</span>. (The yeast is on a plate, and therefore has a constant distance to the measurement device).</p>
+
<p>According to the Binomial distribution, if a tube contained <span class="math inline">\(N\)</span> cells that had no reporter activity, the expected number of recombinase events after light exposure is <span class="math inline">\(N \cdot f(A)\)</span>. As we <em>assumed</em> constant PADH expression, each of these cells will have about <em>the same luciferase expression</em>. Therefore we can predict the luciferase luminescence <span class="math inline">\(L\)</span> do be proportional to <span class="math inline">\(N \cdot f(A)\)</span>. (The yeast on a plate has a constant distance to the measurement device)</p>
<p>It is <span class="math inline">\(\Delta I = k \cdot N \cdot f(A)\)</span>, where <span class="math inline">\(k\)</span> is the constant coefficient. Consequentially, for an observed <span class="math inline">\(\Delta I\)</span> it is <span class="math inline">\(A = f^{-1} \left(\frac{\Delta I}{k\cdot N}\right)\)</span>, which allows the inference of the galactose concentration during light exposure.</p>
+
<p>If <span class="math inline">\(k\)</span> is the proportionality coefficient in <span class="math inline">\(L = k \cdot N \cdot f(A)\)</span> for an observed <span class="math inline">\(\Delta I\)</span>, then it is <span class="math inline">\(A = f^{-1} \left(\frac{L}{k\cdot N}\right)\)</span>. From <span class="math inline">\(A\)</span>, we were able to deduce <span class="math inline">\([\textrm{Dronpa}_\textrm{On}]\)</span> at the time point of light exposure, which allows the computation of the galactose concentration as we assumed that a Hill function describes the Dronpa expression.</p>
 +
 
 
</div>
 
</div>
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->
 
<div id="dia2" class="dia">
 
<div id="dia2" class="dia">
 +
<p>In our chassis, the sensor platform is the promoter <strong>pGAL</strong>, which originates from the <em>gal opeon</em>. As such <strong>pGAL</strong> has the function of a switch, which according to Kim <em>et al</em>, 2012, could be described with a Hill function.</p>
 +
The hill function is:
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_\textrm{production rate}}  {\partial t}  &amp;=&amp;  V : \left(\frac {K^n} {[GAL]^n} + 1 \right)\\ \end{eqnarray}\)</span>
 +
</blockquote>
 +
<table>
 +
<thead>
 +
<tr class="header">
 +
<th align="left">Parameter/Species</th>
 +
<th align="left">Unit</th>
 +
<th align="left">Function</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr class="odd">
 +
<td align="left"><span class="math inline">\(V\)</span></td>
 +
<td align="left"><span class="math inline">\(\frac {M}{sec}\)</span></td>
 +
<td align="left">Max. production-rate of Dronpa</td>
 +
</tr>
 +
<tr class="even">
 +
<td align="left"><span class="math inline">\(K\)</span></td>
 +
<td align="left"><span class="math inline">\(M\)</span></td>
 +
<td align="left">Steepness of Hill function</td>
 +
</tr>
 +
<tr class="odd">
 +
<td align="left"><span class="math inline">\(n\)</span></td>
 +
<td align="left">none</td>
 +
<td align="left">Hill coefficient</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<p>Since the model will only cover a short time-span, in which the Dronpa concentration is constant, we were interested in the steady-state concentrations, which requires a decay. The equations for the exponential decay with half-life time <span class="math inline">\(\tau\)</span> is:</p>
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  \frac {\partial \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_\textrm{decay rate}}  {\partial t}  &amp;=&amp;  -\frac{\ln(2)}{\tau}  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]  \\ \end{eqnarray}\)</span>
 +
</blockquote>
 +
<p>A steady state is reached when the production rate equals the decay.</p>
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  V : \left(\frac {K^n} {[GAL]^n} + 1 \right)  &amp;=&amp; \frac{\ln(2)}{\tau}  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_\textrm{s.s}  \\  \Rightarrow  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_\textrm{s.s}  &amp;=&amp;  \underbrace{  \frac {V \cdot \tau} {\ln(2)}  }_{V&#39;}  : \left(\frac {K^n} {[GAL]^n} + 1 \right) \end{eqnarray}\)</span>
 +
</blockquote>
 +
<p>For a given <span class="math inline">\(V&#39;\)</span>, <span class="math inline">\(\tau\)</span> and <span class="math inline">\(V\)</span> are inversely proportional. Therefore, we did not explicitly determine these parameters, because their product is sufficient to determine the steady state concentration.</p>
 +
<p>According to Hippler <em>et al</em>, 2003, photochemical reactions can be modeled as a zeroth order kinetics with the following rates.</p>
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  v_{\textrm{Off}\rightarrow\textrm{On}}  &amp;=&amp; \alpha \cdot \left[  \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}  \right] \cdot [400nm] \\ \end{eqnarray}\)</span>
 +
</blockquote>
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  v_{\textrm{On}\rightarrow\textrm{Off}}  &amp;=&amp;  \beta \cdot \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right] \cdot [500nm] \\ \end{eqnarray}\)</span>
 +
</blockquote>
 +
<p>These kinetics describe an exponential profile for the concentrations over time. Therefore, the amount Dronpa<span class="math inline">\(_\textrm{On}\)</span> remaining after a 500nm light impulse of <span class="math inline">\(t_1\)</span> duration is:</p>
 +
<blockquote>
 +
<span class="math inline">\(\begin{eqnarray}  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_{t_1}  &amp;=&amp;  \int_0^t - \beta \cdot [500nm] \cdot  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_{t&#39;}  dt&#39;\\  &amp;=&amp;  \left[  \textrm{Dronpa}_\textrm{On}\textrm{-Cre}  \right]_{s.s.}  \cdot  \exp\{-\beta\cdot [500nm] \cdot t_1\} \end{eqnarray}\)</span>
 +
</blockquote>
 +
<div class="figure">
 +
<img src="../wiki/images/a/a7/Model_area.png" alt="Schematic profile of the Dronpa-Off curve." />
 +
<p class="caption">Schematic profile of the Dronpa-Off curve.</p>
 +
</div>
 +
<p>Since the photochemical reaction have an exponential profile, the area <span class="math inline">\(A\)</span> can be computed by the following equation. We assume that the <span class="math inline">\([\textrm{Dronpa}_\textrm{Off}\textrm{-Cre}]\)</span> after the last light impulse is neglictablely small.</p>
 +
<blockquote>
 +
\begin{eqnarray}
 +
    A
 +
    &amp;=&amp;
 +
    \enclose{circle}{1}
 +
    + \enclose{circle}{2}
 +
    + \enclose{circle}{3}\\
 +
    &amp;=&amp;
 +
    \int_0^{t_1}
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}
 +
    \right]_{t&#39;}
 +
    dt&#39;
 +
    \\
 +
    &amp;&amp;+
 +
    t_2 \cdot
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}
 +
    \right]_{t_1}
 +
    \\
 +
    &amp;&amp;+
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{Off}\textrm{-Cre}
 +
    \right]_{t_1}
 +
    \int_0^{t_3}
 +
    \exp\{-\alpha[400nm]t&#39;\}
 +
    dt&#39;
 +
    \\
 +
 +
    &amp;=&amp;
 +
    \int_0^{t_1}
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
    \right]_{s.s.} -
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
    \right]_{t&#39;}
 +
    dt&#39;
 +
    \\
 +
    &amp;&amp;+
 +
    t_2 \cdot
 +
    \left(
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{s.s.} -
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{t_1}
 +
    \right)
 +
    \\
 +
    &amp;&amp;+
 +
    \left(
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{s.s.} -
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{t_1}
 +
    \right)
 +
    \cdot
 +
    \int_0^{t_3}
 +
    \exp\{-\alpha[400nm]t&#39;\}
 +
    dt&#39;
 +
    \\
 +
 +
    &amp;=&amp;
 +
    \left[
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{s.s.} 
 +
        \cdot
 +
        \left(
 +
            t&#39; - \frac{\exp\{-\beta[500nm]t&#39;}{-\beta[500nm]}\}
 +
        \right)
 +
    \right]^{t_1}_0\\
 +
    &amp;&amp;+ t_2 \cdot
 +
        \left[
 +
              \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
        \right]_{s.s.} 
 +
        \cdot
 +
        \left(
 +
            1 - \exp\{-\beta[500nm]t_1\}
 +
        \right)\\
 +
    &amp;&amp;+
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
    \right]_{s.s.} 
 +
    \cdot
 +
    \left(
 +
        1 - \exp\{-\beta[500nm]t_1\}
 +
    \right)
 +
    \cdot
 +
    \left[
 +
        \frac{\exp\{-\alpha[400nm]t&#39;\}}{-\alpha[400nm]}
 +
    \right]^{t_3}_0\\
 +
 +
    &amp;=&amp;
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
    \right]_{s.s.} 
 +
    \cdot
 +
    \big(
 +
        t_1 - \frac 1 {\beta[500nm]}
 +
        + \exp\{-\beta[500nm]t_1\}
 +
        \cdot
 +
        \\&amp;&amp;
 +
        \left(
 +
            \frac 1 {\beta[500nm]}
 +
            + t_2
 +
            - \frac {\exp\{-\alpha[400nm]t_3\}}{\alpha[400nm]}
 +
            + \frac 1 {\alpha[400nm]}
 +
        \right)
 +
    \big)\\
 +
    &amp;\propto&amp;
 +
    \left[
 +
          \textrm{Dronpa}_\textrm{On}\textrm{-Cre}
 +
    \right]_{s.s.} 
 +
\end{eqnarray}
 +
</blockquote>
 +
<p>The Chemwiki suggests that the concentration of fluorescent proteins is proportional to the fluorescence signal, if only a fraction of the excitation energy is absorbed, which was the case for us. Consequentially, the last equation shows that this coefficient will only scale the total area, and therefore can be omitted.</p>
 
</div>
 
</div>
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->
 
<!-- ------------------------------------------------------------------------------------------------------------------------------------------------------------ -->

Revision as of 13:22, 9 September 2015

<
>

The objective of our project was to build a population-encoding galactose sensor with the ability of measuring and storing the concentration level at one specific time-point. The temporal selectivity of the sensor was achieved by light-induced conformation changes of Dronpa, which is a monomeric fluorescence protein. Its fluorescence is activated by violet light (400nm) and deactivated by cyan light (500nm). Dronpa tetramerizes in the fluorescing 'ON'-state. [Zhou2012]

We utilized Dronpas behavior to introduce light-dependent regulation to Cre monomers, which tetramerize to a recombinase complex. In our chassis, the Cre recombinase deletes RFP, which prevents the transcription of a luciferase reporter. The mechanism of our sensor is the galactose dependent expression of Dronpa (in the ON state), which after the exposure to 500nm light no longer inhibits the recombinase. Consequentially, a Cre-Lox recombination deletes RFP, which activates the reporter.

TODO Cre citation

A recombinase event could be considered a stochastic process, that depends on the Cre concentration and on the time span in which it was active. Because the concentration of Dronpa and of the linked Cre is determined by the galactose concentration, the change in luciferase activity in a population is a measure of the galactose concentration at the time point of 500nm light exposure.

Overview of the chassis

Overview of the chassis

The dynamic species and their interactions in the model

The dynamic species and their interactions in the model

Our model is based on the constructs pGAL - NLS - Dronpa - Cre and PADH - RFP - Luciferase. Our model designs the conformational changes in Dronpa by light signals. Here, we adopt the common practice of assuming the overall concentration of proteins to be constant over the short time span of light exposure.

Abbreviations for the genetic elements:

Genetic Element Description
pGAL [Galactose] dependent promotor
Dronpa Dronpa monomere
NLS Signal for nucleus import
Cre Cre-Recombinase monomere
PADH Promotor with constant expression
RFP Inhibits reporter expression
Luciferase Reporter

We described the dynamics of the system with the following equations.

\(\begin{eqnarray} \frac {\partial \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]} {\partial t} &=& \left(\textrm{Off}\rightarrow\textrm{On}\right) - \left(\textrm{On}\rightarrow\textrm{Off}\right)\\ & & \\ &=& \alpha \cdot \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right] \cdot [400nm] \\ & & - \beta \cdot \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right] \cdot [500nm] \end{eqnarray}\)
\(\begin{eqnarray} \frac {\partial \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right]} {\partial t} &=& \left(\textrm{On}\rightarrow\textrm{Off}\right) - \left(\textrm{Off}\rightarrow\textrm{On}\right) & & \\ &=& \beta \cdot \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right] \cdot [500nm] \\ & & - \alpha \cdot \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right] \cdot [400nm] \end{eqnarray}\)
Parameter/Species Unit Function
\([500nm]\), \([400nm]\) \(\frac{photons}{sec}\) Light intensities
\(\alpha\) \(\frac{1}{photons}\) Scaling factor
\(\beta\) \(\frac{1}{photons}\) Scaling factor

Let \(A = \int\ [\textrm{Dronpa}_\textrm{Off}\textrm{-Cre}]_t\ dt\) be the are under \(\textrm{Dronpa}_\textrm{Off}\) concentration curve.

The area \(A\) describes how much and how long Cre was active. As such it could be used as a measure for the likelihodd of a recombinase event occuring in a single cell. We found an invertible function \(f: R^+ \rightarrow [0, 1]\) that describes the probability of the recombinase occuring in a single cell dependent on the are \(A\).

According to the Binomial distribution, if a tube contained \(N\) cells that had no reporter activity, the expected number of recombinase events after light exposure is \(N \cdot f(A)\). As we assumed constant PADH expression, each of these cells will have about the same luciferase expression. Therefore we can predict the luciferase luminescence \(L\) do be proportional to \(N \cdot f(A)\). (The yeast on a plate has a constant distance to the measurement device)

If \(k\) is the proportionality coefficient in \(L = k \cdot N \cdot f(A)\) for an observed \(\Delta I\), then it is \(A = f^{-1} \left(\frac{L}{k\cdot N}\right)\). From \(A\), we were able to deduce \([\textrm{Dronpa}_\textrm{On}]\) at the time point of light exposure, which allows the computation of the galactose concentration as we assumed that a Hill function describes the Dronpa expression.

In our chassis, the sensor platform is the promoter pGAL, which originates from the gal opeon. As such pGAL has the function of a switch, which according to Kim et al, 2012, could be described with a Hill function.

The hill function is:
\(\begin{eqnarray} \frac {\partial \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_\textrm{production rate}} {\partial t} &=& V : \left(\frac {K^n} {[GAL]^n} + 1 \right)\\ \end{eqnarray}\)
Parameter/Species Unit Function
\(V\) \(\frac {M}{sec}\) Max. production-rate of Dronpa
\(K\) \(M\) Steepness of Hill function
\(n\) none Hill coefficient

Since the model will only cover a short time-span, in which the Dronpa concentration is constant, we were interested in the steady-state concentrations, which requires a decay. The equations for the exponential decay with half-life time \(\tau\) is:

\(\begin{eqnarray} \frac {\partial \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_\textrm{decay rate}} {\partial t} &=& -\frac{\ln(2)}{\tau} \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right] \\ \end{eqnarray}\)

A steady state is reached when the production rate equals the decay.

\(\begin{eqnarray} V : \left(\frac {K^n} {[GAL]^n} + 1 \right) &=& \frac{\ln(2)}{\tau} \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_\textrm{s.s} \\ \Rightarrow \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_\textrm{s.s} &=& \underbrace{ \frac {V \cdot \tau} {\ln(2)} }_{V'} : \left(\frac {K^n} {[GAL]^n} + 1 \right) \end{eqnarray}\)

For a given \(V'\), \(\tau\) and \(V\) are inversely proportional. Therefore, we did not explicitly determine these parameters, because their product is sufficient to determine the steady state concentration.

According to Hippler et al, 2003, photochemical reactions can be modeled as a zeroth order kinetics with the following rates.

\(\begin{eqnarray} v_{\textrm{Off}\rightarrow\textrm{On}} &=& \alpha \cdot \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right] \cdot [400nm] \\ \end{eqnarray}\)
\(\begin{eqnarray} v_{\textrm{On}\rightarrow\textrm{Off}} &=& \beta \cdot \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right] \cdot [500nm] \\ \end{eqnarray}\)

These kinetics describe an exponential profile for the concentrations over time. Therefore, the amount Dronpa\(_\textrm{On}\) remaining after a 500nm light impulse of \(t_1\) duration is:

\(\begin{eqnarray} \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{t_1} &=& \int_0^t - \beta \cdot [500nm] \cdot \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{t'} dt'\\ &=& \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \cdot \exp\{-\beta\cdot [500nm] \cdot t_1\} \end{eqnarray}\)
Schematic profile of the Dronpa-Off curve.

Schematic profile of the Dronpa-Off curve.

Since the photochemical reaction have an exponential profile, the area \(A\) can be computed by the following equation. We assume that the \([\textrm{Dronpa}_\textrm{Off}\textrm{-Cre}]\) after the last light impulse is neglictablely small.

\begin{eqnarray} A &=& \enclose{circle}{1} + \enclose{circle}{2} + \enclose{circle}{3}\\ &=& \int_0^{t_1} \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right]_{t'} dt' \\ &&+ t_2 \cdot \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right]_{t_1} \\ &&+ \left[ \textrm{Dronpa}_\textrm{Off}\textrm{-Cre} \right]_{t_1} \int_0^{t_3} \exp\{-\alpha[400nm]t'\} dt' \\ &=& \int_0^{t_1} \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} - \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{t'} dt' \\ &&+ t_2 \cdot \left( \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} - \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{t_1} \right) \\ &&+ \left( \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} - \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{t_1} \right) \cdot \int_0^{t_3} \exp\{-\alpha[400nm]t'\} dt' \\ &=& \left[ \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \cdot \left( t' - \frac{\exp\{-\beta[500nm]t'}{-\beta[500nm]}\} \right) \right]^{t_1}_0\\ &&+ t_2 \cdot \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \cdot \left( 1 - \exp\{-\beta[500nm]t_1\} \right)\\ &&+ \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \cdot \left( 1 - \exp\{-\beta[500nm]t_1\} \right) \cdot \left[ \frac{\exp\{-\alpha[400nm]t'\}}{-\alpha[400nm]} \right]^{t_3}_0\\ &=& \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \cdot \big( t_1 - \frac 1 {\beta[500nm]} + \exp\{-\beta[500nm]t_1\} \cdot \\&& \left( \frac 1 {\beta[500nm]} + t_2 - \frac {\exp\{-\alpha[400nm]t_3\}}{\alpha[400nm]} + \frac 1 {\alpha[400nm]} \right) \big)\\ &\propto& \left[ \textrm{Dronpa}_\textrm{On}\textrm{-Cre} \right]_{s.s.} \end{eqnarray}

The Chemwiki suggests that the concentration of fluorescent proteins is proportional to the fluorescence signal, if only a fraction of the excitation energy is absorbed, which was the case for us. Consequentially, the last equation shows that this coefficient will only scale the total area, and therefore can be omitted.

[Hippler]: Hippler, M. (2003). Advanced Chemistry Classroom and Laboratory Photochemical Kinetics : Reaction Orders and Analogies with Molecular Beam Scattering and Cavity Ring-Down Experiments. Journal of Chemical Education, 80(September), 1074-1077.

[Zhou]: Zhou, Xin X., et al. (2012). Optical Control of Protein Activity by Fluorescent Protein Domains. Science, 338(November), 810-814.

[Kim]: Kim, H., & Gelenbe, E. (2012). Stochastic gene expression modeling with hill function for switch-like gene responses. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(April), 973-979. http://doi.org/10.1109/TCBB.2011.153

[Chemwiki]: Chemwiki article on fluorescence.