Difference between revisions of "Team:Aalto-Helsinki/Questionnaire"
(Fixed roles of respondents numbers) |
(Annas suggested fixes) |
||
Line 377: | Line 377: | ||
<h4>Solutions to cooperation issues</h4> | <h4>Solutions to cooperation issues</h4> | ||
− | <blockquote><i>“We have been dealing with this by talking with no hesitation, exchanging ideas and experiences and accepting that our knowledge completes each others.”</i><br/> | + | <blockquote><i>“We have been dealing with this by talking with no hesitation, exchanging ideas and experiences and accepting that our knowledge completes each others'.”</i><br/> |
<cite>- A physics student working mainly on modeling</cite> | <cite>- A physics student working mainly on modeling</cite> | ||
</blockquote> | </blockquote> | ||
Line 388: | Line 388: | ||
<i><h5>Working together</h5></i> | <i><h5>Working together</h5></i> | ||
− | <p>In quite many teams, the cooperation was enhanced and the knowledge gap narrowed by taking the modelers to perform the experiments in together with the biologists, in some cases only for a short time in the beginning of the project. Some teams have people who work both in the laboratory and in the modeling team with full-time modelers to answer their biology-related questions. This was also seen as a way to avoid communication problems between the modelers and the rest of the team. In some teams, the modelers and experimentalists work tightly together. One respondent mentioned that it would have been helpful to have had the experimentalists involved in the modeling right from the beginning.</p> | + | <p>In quite many teams, the cooperation was enhanced and the knowledge gap narrowed by taking the modelers to perform the experiments in the lab together with the biologists, in some cases only for a short time in the beginning of the project. Some teams have people who work both in the laboratory and in the modeling team with full-time modelers to answer their biology-related questions. This was also seen as a way to avoid communication problems between the modelers and the rest of the team. In some teams, the modelers and experimentalists work tightly together. One respondent mentioned that it would have been helpful to have had the experimentalists involved in the modeling right from the beginning.</p> |
<i><h5>One person doing both modeling and experimentation</h5></i> | <i><h5>One person doing both modeling and experimentation</h5></i> | ||
Line 394: | Line 394: | ||
<h4>Integration of modeling and experimentation</h4> | <h4>Integration of modeling and experimentation</h4> | ||
− | <blockquote><i>“The choice of promoters, | + | <blockquote><i>“The choice of promoters, RBSs and plasmids depended greatly on the model data obtained.”</i><br/> |
<cite>- A 5th year biomedical engineering student</cite> | <cite>- A 5th year biomedical engineering student</cite> | ||
</blockquote> | </blockquote> | ||
− | <p>Sufficient integration of modeling and experimental work done in the laboratory was considered difficult but important. About half the teams were able to get modeling results that affected the work done in the laboratory. As often was the expectation, modeling helped some teams in focusing their time and energy on certain designs. For instance, it helped teams in deciding what constructs to create and influenced the choice of promoters, RBS and plasmid backbones. Some teams | + | <p>Sufficient integration of modeling and experimental work done in the laboratory was considered difficult but important. About half the teams were able to get modeling results that affected the work done in the laboratory. As often was the expectation, modeling helped some teams in focusing their time and energy on certain designs. For instance, it helped teams in deciding what constructs to create and influenced the choice of promoters, RBS and plasmid backbones. Some teams adjusted the protein degradation in their gene circuits according to the models they built. One respondent also noted that modeling helped in thinking about the possible influences in the system and in improving experimental setups. Some teams performed experiments to gain parameters for their models and adjusted their models according to experimental results.</p> |
<p>When there was no effect or the effect was smaller than desired, it was often a question of time. Building a model takes time, but due to the tight timeframe of the iGEM competition, work in the laboratory needs to start early as well. Therefore, the model might provide results only at a too late stage for it to have any effect in the experiments. Many would have preferred to start the modeling earlier on, had it been possible. One respondent replied that the modeling will not have any significant effect, as their team is doing so little modeling due to lack of expertise. In some cases there was simply not enough time to adjust or validate a model using experimental data, often due to difficulties in performing the experiments successfully. Due to the timing of our questionnaire approximately 6 weeks before the end of the competition, some respondents answered that they do not yet know whether there will be an effect, but were nevertheless mostly optimistic.</p> | <p>When there was no effect or the effect was smaller than desired, it was often a question of time. Building a model takes time, but due to the tight timeframe of the iGEM competition, work in the laboratory needs to start early as well. Therefore, the model might provide results only at a too late stage for it to have any effect in the experiments. Many would have preferred to start the modeling earlier on, had it been possible. One respondent replied that the modeling will not have any significant effect, as their team is doing so little modeling due to lack of expertise. In some cases there was simply not enough time to adjust or validate a model using experimental data, often due to difficulties in performing the experiments successfully. Due to the timing of our questionnaire approximately 6 weeks before the end of the competition, some respondents answered that they do not yet know whether there will be an effect, but were nevertheless mostly optimistic.</p> | ||
Line 440: | Line 440: | ||
<p>The expectations students have for modeling appear to rather well meet the results they are getting from it. Modeling aids in getting theoretical insight of the biological system, understanding factors that influence the system and predicting the outcome of an experiment. Models help experimentalists focus their efforts and reduce the amount of experiments required and sometimes predict whether an idea is possible or reasonable to realize at all.</p> | <p>The expectations students have for modeling appear to rather well meet the results they are getting from it. Modeling aids in getting theoretical insight of the biological system, understanding factors that influence the system and predicting the outcome of an experiment. Models help experimentalists focus their efforts and reduce the amount of experiments required and sometimes predict whether an idea is possible or reasonable to realize at all.</p> | ||
− | <p> | + | <p>Though the tight timeframe of iGEM makes it difficult to get practical benefits from modeling, the expectations were met rather well. Often the modeling team needs some time in the beginning to get familiar with biology and building the models itself takes a lot of time. Due to the tight schedule of the competition, the experiments also need to be started early on, so many decisions that modeling could have affected are already made when the modeling is able to catch up. When the models are ready, there can be little time left to adjust or validate the model using experimental data.</p> |
<h3>Approaches to organizing modeling</h3> | <h3>Approaches to organizing modeling</h3> | ||
Line 469: | Line 469: | ||
<p>Both professional synthetic biology research groups and iGEM teams have somewhat similar composition, with most of the team having biology backgrounds. However, professional groups have almost double the amount of mathematical fields (22% in professional research groups vs 11% in iGEM teams). Students and researchers from these fields usually do modeling, perhaps indicating that the role of modeling is more prominent in professional synthetic biology research groups.</p> | <p>Both professional synthetic biology research groups and iGEM teams have somewhat similar composition, with most of the team having biology backgrounds. However, professional groups have almost double the amount of mathematical fields (22% in professional research groups vs 11% in iGEM teams). Students and researchers from these fields usually do modeling, perhaps indicating that the role of modeling is more prominent in professional synthetic biology research groups.</p> | ||
− | <p>Most of the mathematical majors in professional teams seemed to be traditional computer science with no biological background, whereas iGEM teams had majors that directly combined modeling and biology, such as systems biology or bioinformatics. It is of course likely that the computer scientists in synthetic biology had more or less learnt bioinformatics, systems biology, or other subspecialty | + | <p>Most of the mathematical majors in professional teams seemed to be traditional computer science with no biological background, whereas iGEM teams had majors that directly combined modeling and biology, such as systems biology or bioinformatics. It is of course likely that the computer scientists in synthetic biology had more or less learnt bioinformatics, systems biology, or other subspecialty through their work. The division may be caused by the fact that these fields are relatively young as separate majors. Thus, we may see more of them in the future within research as well.</p> |
<p>Additionally, professional research groups have a lot less researchers with a biotechnology background (8%) compared to iGEM teams (26%). This could reflect the notion that technology and engineering students are less likely to work with academical research and more often work in companies. People with a biotechnology background appeared to work as mediators between biology and modeling. Bioengineers have also been noticed to work as boundary agents in both industry and academia, as they have been trained to be interdisciplinary and integrative (Nersessian et al. 2014). The fairly large amount of biotechnology students in iGEM teams could therefore improve communication between modelers with a mathematical background and experimentalists. This requires of course that there are people with a mathematical background in the team to begin with, which surprisingly often is not the case.</p> | <p>Additionally, professional research groups have a lot less researchers with a biotechnology background (8%) compared to iGEM teams (26%). This could reflect the notion that technology and engineering students are less likely to work with academical research and more often work in companies. People with a biotechnology background appeared to work as mediators between biology and modeling. Bioengineers have also been noticed to work as boundary agents in both industry and academia, as they have been trained to be interdisciplinary and integrative (Nersessian et al. 2014). The fairly large amount of biotechnology students in iGEM teams could therefore improve communication between modelers with a mathematical background and experimentalists. This requires of course that there are people with a mathematical background in the team to begin with, which surprisingly often is not the case.</p> |
Revision as of 16:18, 12 September 2015