Difference between revisions of "Team:Aalto-Helsinki/Kinetics"

(a bit bigger pathwaypic and table background to white)
(reference system for the sources)
Line 88: Line 88:
 
<h1 id="kinetics">Kinetics</h1>
 
<h1 id="kinetics">Kinetics</h1>
  
<p>We modeled our enzyme reactions in the propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in metabolical modeling of enzymes. Michaelis-Menten kinetics assumes that the reaction an enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration and \( V_{max} \) tells us the maximum speed of the enzyme. \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration. \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes the substrate to a product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002).</p>
+
<p>We modeled our enzyme reactions in the propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in metabolical modeling of enzymes. Michaelis-Menten kinetics assumes that the reaction an enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration and \( V_{max} \) tells us the maximum speed of the enzyme. \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration. \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes the substrate to a product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example [1].</p>
  
 
<figure id="fig1" style="margin-bottom:3%;">
 
<figure id="fig1" style="margin-bottom:3%;">
Line 103: Line 103:
 
<p>2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA</p>
 
<p>2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA</p>
  
<p>AtoB is native to <span style="font-style:italic">Escherichia Coli</span>. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one <span style="font-size:13px">(Vf/Vr: 22.3, Source: Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170)</span> we can approximate is as irreversible.</p>
+
<p>AtoB is native to <span style="font-style:italic">Escherichia Coli</span>. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one (Vf/Vr: 22.3, Source: [2]) we can approximate is as irreversible.</p>
 
<p>Based on <a href="http://www.sciencedirect.com/science/article/pii/S0022283605000409">this</a> article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:</p>
 
<p>Based on <a href="http://www.sciencedirect.com/science/article/pii/S0022283605000409">this</a> article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:</p>
  
Line 121: Line 121:
 
       <td><p>\( K_{cat}^{AtoB} \)</p></td>
 
       <td><p>\( K_{cat}^{AtoB} \)</p></td>
 
       <td><p>10653 1/min</p></td>
 
       <td><p>10653 1/min</p></td>
       <td><p>Thiolases of Escherichia coli: purification and chain length specificities
+
       <td><p>[3] </p></td>
Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411 </p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 128: Line 127:
 
       <td><p>\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)</p></td>
 
       <td><p>0.00047 mol/l</p></td>
 
       <td><p>0.00047 mol/l</p></td>
       <td><p>Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170</p></td>
+
       <td><p>[2]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 146: Line 145:
 
<p>FadB2 is found from<span style="font-style:italic"> Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)</span>. The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.</p>
 
<p>FadB2 is found from<span style="font-style:italic"> Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)</span>. The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.</p>
  
<p>The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See <span style="font-size:13px">Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)</span> for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because it needs to be fairly constant in the cell or otherwise the cell will die off. This yields us the following as our reaction rate equation.</p>
+
<p>The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See [1] for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because it needs to be fairly constant in the cell or otherwise the cell will die off. This yields us the following as our reaction rate equation.</p>
  
 
<p>\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}}
 
<p>\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}}
Line 165: Line 164:
 
       <td><p>\( K_{cat1}^{FadB2} \)</p></td>
 
       <td><p>\( K_{cat1}^{FadB2} \)</p></td>
 
       <td><p>0.677 1/min</p></td>
 
       <td><p>0.677 1/min</p></td>
       <td><p style=>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
       <td><p >[4]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 171: Line 170:
 
       <td><p>\( K_{cat2}^{FadB2} \)</p></td>
 
       <td><p>\( K_{cat2}^{FadB2} \)</p></td>
 
       <td><p>0.723 1/min</p></td>
 
       <td><p>0.723 1/min</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 178: Line 176:
 
       <td><p>\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>65.6 mmol/l</p></td>
 
       <td><p>65.6 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 185: Line 182:
 
       <td><p>\( K_{M}^{FadB2:NADPH} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:NADPH} \)</p></td>
 
       <td><p>50 mmol/l</p></td>
 
       <td><p>50 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 192: Line 188:
 
       <td><p>\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>43.5 mmol/l</p></td>
 
       <td><p>43.5 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 199: Line 194:
 
       <td><p>\( K_{M}^{FadB2:NADP^+} \)</p></td>
 
       <td><p>\( K_{M}^{FadB2:NADP^+} \)</p></td>
 
       <td><p>29.5 mmol/l</p></td>
 
       <td><p>29.5 mmol/l</p></td>
       <td><p>Characterization of a b-hydroxybutyryl-CoA dehydrogenase from
+
       <td><p>[4]</p></td>
Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982</p></td>
+
 
       <td><p>Reverse reaction</p></td>
 
       <td><p>Reverse reaction</p></td>
 
     </tr>
 
     </tr>
Line 218: Line 212:
 
<p>The enzyme used in the propane pathway is from <span style="font-style:italic">Clostridium acetobutylicum</span>, but only values to be found were for <span style="font-style:italic">Clostridium Kluyveri</span>. However, we do not see this as a problem since the species are very close relatives and so the values ought to be close enough for comparison.</p>
 
<p>The enzyme used in the propane pathway is from <span style="font-style:italic">Clostridium acetobutylicum</span>, but only values to be found were for <span style="font-style:italic">Clostridium Kluyveri</span>. However, we do not see this as a problem since the species are very close relatives and so the values ought to be close enough for comparison.</p>
  
<p>The reaction is reversible, but according to<span style="font-style:italic"> Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973)</span>, the specific activity of 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein. The rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein. Because of the disparity between these rates we approximate the reaction as irreversible.</p>
+
<p>The reaction is reversible, but according to [5], the specific activity of 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein. The rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein. Because of the disparity between these rates we approximate the reaction as irreversible.</p>
  
 
<p>We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. Based on these pieces of information we can assume that the reaction is either random or ordered Bi Bi -reaction so the rate equation is as follows.</p>
 
<p>We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. Based on these pieces of information we can assume that the reaction is either random or ordered Bi Bi -reaction so the rate equation is as follows.</p>
Line 237: Line 231:
 
       <td><p>\( K_{cat}^{Hbd} \)</p></td>
 
       <td><p>\( K_{cat}^{Hbd} \)</p></td>
 
       <td><p>336.4 1/min</p></td>
 
       <td><p>336.4 1/min</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Forward reaction, Clostridium Kluyveri</p></td>
 
       <td><p>Forward reaction, Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 243: Line 237:
 
       <td><p>\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)</p></td>
 
       <td><p>5e-5 mol/l</p></td>
 
       <td><p>5e-5 mol/l</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 249: Line 243:
 
       <td><p>\( K_{M}^{Hbd:NADPH} \)</p></td>
 
       <td><p>\( K_{M}^{Hbd:NADPH} \)</p></td>
 
       <td><p>7e-5 mol/l</p></td>
 
       <td><p>7e-5 mol/l</p></td>
       <td><p>Purification and Properties of NADP-Dependent <br/>L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)</p></td>
+
       <td><p>[5]</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
       <td><p>Clostridium Kluyveri</p></td>
 
     </tr>
 
     </tr>
Line 282: Line 276:
 
       <td><p>\( K_{cat}^{Crt} \)</p></td>
 
       <td><p>\( K_{cat}^{Crt} \)</p></td>
 
       <td><p>1279.8 1/min</p></td>
 
       <td><p>1279.8 1/min</p></td>
       <td><p>Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271</p></td>
+
       <td><p>[6]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 288: Line 282:
 
       <td><p>\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)</p></td>
 
       <td><p>3e-5 mol/l</p></td>
 
       <td><p>3e-5 mol/l</p></td>
       <td><p>Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271</p></td>
+
       <td><p>[6]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 304: Line 298:
 
<p>Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)</p>
 
<p>Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)</p>
  
<p>Ter is from <span style="font-style:italic;">Treponema denticola</span>. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first (<span style="font-size:13px">source: Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</span>). Since we found no references for the reaction to be reversible, we modeled it as irreversible.</p>
+
<p>Ter is from <span style="font-style:italic;">Treponema denticola</span>. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first [7]. Since we found no references for the reaction to be reversible, we modeled it as irreversible.</p>
  
 
<p>\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]</p>
 
<p>\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]</p>
Line 321: Line 315:
 
       <td><p>\( K_{cat}^{Ter} \)</p></td>
 
       <td><p>\( K_{cat}^{Ter} \)</p></td>
 
       <td><p>5460 1/min</p></td>
 
       <td><p>5460 1/min</p></td>
       <td><p>Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 327: Line 321:
 
       <td><p>\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)</p></td>
 
       <td><p>70 µmol/l</p></td>
 
       <td><p>70 µmol/l</p></td>
       <td><p> Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 333: Line 327:
 
       <td><p>\( K_{M}^{Ter:NADH} \)</p></td>
 
       <td><p>\( K_{M}^{Ter:NADH} \)</p></td>
 
       <td><p>5.2e-06 mol/l</p></td>
 
       <td><p>5.2e-06 mol/l</p></td>
       <td><p>Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837</p></td>
+
       <td><p>[7]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 339: Line 333:
 
       <td><p>\( K_{I}^{Ter:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{I}^{Ter:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>1.98e-07 mol/l</p></td>
 
       <td><p>1.98e-07 mol/l</p></td>
       <td><p>Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837
+
       <td><p>[7]</p></td>
</p></td>
+
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 373: Line 366:
 
       <td><p>\( K_{cat}^{YciA} \)</p></td>
 
       <td><p>\( K_{cat}^{YciA} \)</p></td>
 
       <td><p>1320 1/min</p></td>
 
       <td><p>1320 1/min</p></td>
       <td><p>Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796</p></td>
+
       <td><p>[8]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 379: Line 372:
 
       <td><p>\( K_{M}^{YciA:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>\( K_{M}^{YciA:Butyryl\text{-}CoA} \)</p></td>
 
       <td><p>3.5e-06 mol/l</p></td>
 
       <td><p>3.5e-06 mol/l</p></td>
       <td><p>Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796</p></td>
+
       <td><p>[8]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 413: Line 406:
 
       <td><p>\( K_{cat}^{Car} \)</p></td>
 
       <td><p>\( K_{cat}^{Car} \)</p></td>
 
       <td><p>150 1/min</p></td>
 
       <td><p>150 1/min</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p>Forward reaction, calculated from a plot</p></td>
 
       <td><p>Forward reaction, calculated from a plot</p></td>
 
     </tr>
 
     </tr>
Line 419: Line 412:
 
       <td><p>\( K_{M}^{Car:Butyrate} \)</p></td>
 
       <td><p>\( K_{M}^{Car:Butyrate} \)</p></td>
 
       <td><p>0.013 mol/l</p></td>
 
       <td><p>0.013 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p>Calculated from a plot</p></td>
 
       <td><p>Calculated from a plot</p></td>
 
     </tr>
 
     </tr>
Line 425: Line 418:
 
       <td><p>\( K_{M}^{Car:NADPH} \)</p></td>
 
       <td><p>\( K_{M}^{Car:NADPH} \)</p></td>
 
       <td><p>4.8e-05 mol/l</p></td>
 
       <td><p>4.8e-05 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 431: Line 424:
 
       <td><p>\( K_{M}^{Car:ATP} \)</p></td>
 
       <td><p>\( K_{M}^{Car:ATP} \)</p></td>
 
       <td><p>0.000115 mol/l</p></td>
 
       <td><p>0.000115 mol/l</p></td>
       <td><p>Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92</p></td>
+
       <td><p>[9]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 479: Line 472:
 
       <td><p>\( K_{cat}^{Ado} \)</p></td>
 
       <td><p>\( K_{cat}^{Ado} \)</p></td>
 
       <td><p>0.03 1/min</p></td>
 
       <td><p>0.03 1/min</p></td>
       <td><p>Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)</p></td>
+
       <td><p>[10]</p></td>
 
       <td><p>Forward reaction</p></td>
 
       <td><p>Forward reaction</p></td>
 
     </tr>
 
     </tr>
Line 485: Line 478:
 
       <td><p>\( K_{M}^{Ado:Butyraldehyde} \)</p></td>
 
       <td><p>\( K_{M}^{Ado:Butyraldehyde} \)</p></td>
 
       <td><p>0.0101 mol/l</p></td>
 
       <td><p>0.0101 mol/l</p></td>
       <td><p>Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)</p></td>
+
       <td><p>[10]</p></td>
 
       <td><p></p></td>
 
       <td><p></p></td>
 
     </tr>
 
     </tr>
Line 514: Line 507:
 
       <td><p>[Acetyl-CoA]</p></td>
 
       <td><p>[Acetyl-CoA]</p></td>
 
       <td><p>0.00061 mol/l</p></td>
 
       <td><p>0.00061 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 520: Line 513:
 
       <td><p>[Acetoacetyl-CoA]</p></td>
 
       <td><p>[Acetoacetyl-CoA]</p></td>
 
       <td><p>2.2e-05 mol/l</p></td>
 
       <td><p>2.2e-05 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 526: Line 519:
 
       <td><p>[CoA]</p></td>
 
       <td><p>[CoA]</p></td>
 
       <td><p>0.00014 mol/l</p></td>
 
       <td><p>0.00014 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 532: Line 525:
 
       <td><p>[NADPH]</p></td>
 
       <td><p>[NADPH]</p></td>
 
       <td><p>0.00012 mol/l</p></td>
 
       <td><p>0.00012 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 538: Line 531:
 
       <td><p>[NADP\( ^+\)]</p></td>
 
       <td><p>[NADP\( ^+\)]</p></td>
 
       <td><p>2.1e-06 mol/l</p></td>
 
       <td><p>2.1e-06 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 544: Line 537:
 
       <td><p>[NADH]</p></td>
 
       <td><p>[NADH]</p></td>
 
       <td><p>8.3e-05 mol/l</p></td>
 
       <td><p>8.3e-05 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 550: Line 543:
 
       <td><p>[NAD\( ^+\)]</p></td>
 
       <td><p>[NAD\( ^+\)]</p></td>
 
       <td><p>0.0026 mol/l</p></td>
 
       <td><p>0.0026 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 556: Line 549:
 
       <td><p>[ATP]</p></td>
 
       <td><p>[ATP]</p></td>
 
       <td><p>0.0096 mol/l</p></td>
 
       <td><p>0.0096 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 562: Line 555:
 
       <td><p>[AMP]</p></td>
 
       <td><p>[AMP]</p></td>
 
       <td><p>0.00028 mol/l</p></td>
 
       <td><p>0.00028 mol/l</p></td>
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
+
       <td><p>[11]</p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
Line 573: Line 566:
 
   </tbody>
 
   </tbody>
 
</table>
 
</table>
<p style="margin-bottom:0;padding-bottom:10%;"></p>
 
 
</section>
 
</section>
 
<!-- Other constants end -->
 
<!-- Other constants end -->
 +
 +
 +
 +
<!-- Sources -->
 +
<section id="sources" data-anchor="sources">
 +
<h2>Sources</h2>
 +
 +
<p>[1] Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)</p>
 +
<p>[2] Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of <i>Escherichia coli</i>; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170 </p>
 +
<p>[3] Thiolases of <i>Escherichia coli</i>: purification and chain length specificities
 +
Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411 </p>
 +
<p>[4] Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982 </p>
 +
<p>[5] Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973) </p>
 +
<p>[6] Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271 </p>
 +
<p>[7] Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837 </p>
 +
<p>[8] Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796 </p>
 +
<p>[9] Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92 </p>
 +
<p>[10] Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013) </p>
 +
<p>[11] Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009 </p>
 +
 +
 +
<p style="margin-bottom:0;padding-bottom:10%;"></p>
 +
</section>
 +
<!-- Sources end -->
 +
  
 
</div><!-- end inner-container-->
 
</div><!-- end inner-container-->

Revision as of 13:35, 14 September 2015

Kinetics

We modeled our enzyme reactions in the propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in metabolical modeling of enzymes. Michaelis-Menten kinetics assumes that the reaction an enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The archetypical Michaelis-Menten equation for a reaction with one substrate and one product, i.e. \(S \rightarrow P; E \) is \[ \frac{d[P]}{dt} = \frac{V_{max}[S]}{K_{M}+[S]}, \] where \([S]\) is substrate concentration and \( V_{max} \) tells us the maximum speed of the enzyme. \( K_{M} \) is the substrate concentration at which the reaction rate is half of \( V_{max} \), also called the Michaelis constant. Usually we need to calculate \( V_{max} \) by \( K_{cat}\cdot [E] \) where \([E]\) is enzyme concentration. \( K_{cat} \) is the turnover number (unit: \( \tfrac{1}{min} \) ), which describes the speed at which an enzyme processes the substrate to a product. Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. For more information, see for example [1].

Figure 1: Propane pathway.

AtoB

2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA

AtoB is native to Escherichia Coli. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one (Vf/Vr: 22.3, Source: [2]) we can approximate is as irreversible.

Based on this article, we know that the reaction follows Ping Pong Bi Bi -model and so we get the following rate equation:

\[ \frac{K_{cat}^{AtoB} \cdot [AtoB] \cdot [Acetyl\text{-}CoA]^2}{[Acetyl\text{-}CoA]^2+2\cdot K_{M}^{AtoB:Acetyl\text{-}CoA}\cdot [Acetyl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{AtoB} \)

10653 1/min

[3]

Forward reaction

\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)

0.00047 mol/l

[2]

FadB2

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

FadB2 is found from Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv). The reaction it catalyzes is reversible and we have assumed it to follow random bi bi reaction model.

The equilibrium constant \(K_{eq}\) in reversible random bi bi model is from Haldane relationship \[ K_{eq} = \frac{V_1\cdot K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA}\cdot K_{M}^{FadB2:NADP^+}}{V_2\cdot K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}.\] See [1] for reference. We have not taken H\(^+\) concentration into account in this calculation which is justified because it needs to be fairly constant in the cell or otherwise the cell will die off. This yields us the following as our reaction rate equation.

\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}} {\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:NADPH}\cdot [Acetoacetyl\text{-}CoA]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{ K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADP^+]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+} \] \[ \cdots \frac{}{+\frac{K_{M}^{FadB2:NADP^+}\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+\frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{[NADP^+]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}}\]

Constant

Value

Source

To note

\( K_{cat1}^{FadB2} \)

0.677 1/min

[4]

Forward reaction

\( K_{cat2}^{FadB2} \)

0.723 1/min

[4]

Reverse reaction

\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)

65.6 mmol/l

[4]

Forward reaction

\( K_{M}^{FadB2:NADPH} \)

50 mmol/l

[4]

Forward reaction

\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)

43.5 mmol/l

[4]

Reverse reaction

\( K_{M}^{FadB2:NADP^+} \)

29.5 mmol/l

[4]

Reverse reaction

Hbd

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

The enzyme used in the propane pathway is from Clostridium acetobutylicum, but only values to be found were for Clostridium Kluyveri. However, we do not see this as a problem since the species are very close relatives and so the values ought to be close enough for comparison.

The reaction is reversible, but according to [5], the specific activity of 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein. The rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein. Because of the disparity between these rates we approximate the reaction as irreversible.

We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. Based on these pieces of information we can assume that the reaction is either random or ordered Bi Bi -reaction so the rate equation is as follows.

\[ \frac{K_{cat}^{Hbd}\cdot [Hbd] \cdot [Acetoacetyl\text{-}CoA]\cdot [NADPH]}{[Acetoacetyl\text{-}CoA]\cdot [NADPH] + K_{M}^{Hbd:NADPH}\cdot [Acetoacetyl\text{-}CoA]+K_{M}^{Hbd:Acetoacetyl\text{-}CoA}\cdot [NADPH]} \]

Constant

Value

Source

To note

\( K_{cat}^{Hbd} \)

336.4 1/min

[5]

Forward reaction, Clostridium Kluyveri

\( K_{M}^{Hbd:Acetoacetyl\text{-}CoA} \)

5e-5 mol/l

[5]

Clostridium Kluyveri

\( K_{M}^{Hbd:NADPH} \)

7e-5 mol/l

[5]

Clostridium Kluyveri

Crt

3-hydroxybutyryl-CoA \(\rightarrow\) Crotonyl-CoA + H\( _2\)O

Crt is found from Clostridium acetobutylicum. Since there is only one substrate in the reaction, we can form the rate equation from basic Michaelis-Menten kinetic model. We assumed the reaction to be irreversible since the enzyme is quite efficient.

\[ \frac{K_{cat}^{Crt}\cdot [Crt]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} +[3\text{-}hydroxybutyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{Crt} \)

1279.8 1/min

[6]

Forward reaction

\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)

3e-5 mol/l

[6]

Ter

Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)

Ter is from Treponema denticola. Its reaction without H\( ^+\) is an ordered bi-bi reaction mechanism with NADH binding first [7]. Since we found no references for the reaction to be reversible, we modeled it as irreversible.

\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]

Constant

Value

Source

To note

\( K_{cat}^{Ter} \)

5460 1/min

[7]

Forward reaction

\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)

70 µmol/l

[7]

\( K_{M}^{Ter:NADH} \)

5.2e-06 mol/l

[7]

\( K_{I}^{Ter:Butyryl\text{-}CoA} \)

1.98e-07 mol/l

[7]

YciA

Butyryl-CoA + H\( _2\)O \(\rightarrow\) Butyrate + CoA

YciA is found in Haemophilus influenzae. When searching for information about this enzyme no references for it being reversible were found. Because of this we modeled it as irreversible. We know that there is abundance of water in the cell, so when considering rate equation we can safely assume that it doesn't have much effect to it. This is why we can again use the basic Michaelis-Menten rate equation.

\[ \frac{K_{cat}^{YciA}\cdot [YciA]\cdot [Butyryl\text{-}CoA]}{K_{M}^{YciA:Butyryl\text{-}CoA} +[Butyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{YciA} \)

1320 1/min

[8]

Forward reaction

\( K_{M}^{YciA:Butyryl\text{-}CoA} \)

3.5e-06 mol/l

[8]

Car

Butyrate + NADPH + ATP \(\rightarrow\) Butyraldehyde + NADP\(^+\) + AMP + 2P\(_i\)

Car-enzyme is originally from Mycobacterium marinum. We assumed that this reaction is irreversible, which is justified because we have ATP in the reactants so we know that the possible reverse reaction can’t be very efficient. For the same reasons as mentioned before, we didn’t consider \(H^+\) in equations. We know that the reaction can be modeled using Bi Uni Uni Bi Ping Pong mechanism. Thus, the rate equation will be

\[\frac{K_{cat}^{Car}\cdot [Car]\cdot [Butyrate]\cdot [NADPH]\cdot [ATP]}{K_{M}^{Car:Butyrate}\cdot K_{M}^{Car:NADPH}\cdot [ATP]+K_{M}^{Car:ATP}\cdot [Butyrate]\cdot [NADPH]+K_{M}^{Car:NADPH}\cdot [Butyrate]\cdot [ATP]}\]\[\cdots \frac{}{+K_{M}^{Car:Butyrate}\cdot [NADPH]\cdot [ATP]+ [Butyrate]\cdot [NADPH]\cdot [ATP]}\]

Constant

Value

Source

To note

\( K_{cat}^{Car} \)

150 1/min

[9]

Forward reaction, calculated from a plot

\( K_{M}^{Car:Butyrate} \)

0.013 mol/l

[9]

Calculated from a plot

\( K_{M}^{Car:NADPH} \)

4.8e-05 mol/l

[9]

\( K_{M}^{Car:ATP} \)

0.000115 mol/l

[9]

Sfp

Sfp does not directly affect to the intermediates in our pathway, but instead acts as an activating enzyme for Car. We have modeled the reactions concerning Sfp here.

Ado

Aldehyde deformylating oxygenase is the final enzyme in the propane pathway, turning butyraldehyde into propane. We are using an ADO mutant (A134F) that has an increased activity towards short-chained aldehydes, such as butyraldehyde. Furthermore, we are enhancing the electron supply to ADO by overexpressing its presumed natural electron acceptor/donor ferredoxin. To reduce ferredoxin under aerobic conditions, we co-express NADPH/ferredoxin/flawodoxin-oxidoreductase(Fpr).

Using an A134F mutant and a ferredoxin reducing system including Fpr improves propane production. Combining all these improvements is challenging from the modeling point of view, as there are no kinetic parameters available for the reaction where both the ADO A134F mutant and a ferredoxin reducing system are used. As no sufficient data is available, we cannot model the ADO reaction like we have modeled the other reactions in the propane pathway.

We know that the wild-type ADO together with PMS/NADH reducing system has kcat value 0.0031±0.0001 min−1 and Km value 10.1±0.9 mM for the reaction from butyraldehyde to propane. A134F mutant has been shown to be more efficient than wild-type ADO and ferredoxin reducing system more efficient for ADO than a PMS/NADH reducing system. Therefore we can rather safely assume 10.1±0.9 mM to be the maximum Km possible and 0.0031±0.0001 min−1 to be the minimum kcat possible for estimating ADO reaction kinetics in our system.

Since we could not model the reactions that govern ADO's function, we approximated these reactions by simplifying the enzyme kinetics that govern ADO to the simplest case of Miclaelis-Menten kinetics. While this is not ideal, with current data and within these time limitations we can't make better assumptions.

\[ \frac{K_{cat}^{Ado}\cdot [Ado]\cdot [Butyrate]}{K_{M}^{Ado:Butyrate} +[Butyrate]} \]

Constant

Value

Source

To note

\( K_{cat}^{Ado} \)

0.03 1/min

[10]

Forward reaction

\( K_{M}^{Ado:Butyraldehyde} \)

0.0101 mol/l

[10]

Other Constants

The following table provides information about typical concentrations in a cell that we use in our model.

Constant

Value

Source

To note

[Acetyl-CoA]

0.00061 mol/l

[11]

glucose-fed, exponentially growing E. coli

[Acetoacetyl-CoA]

2.2e-05 mol/l

[11]

glucose-fed, exponentially growing E. coli

[CoA]

0.00014 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADPH]

0.00012 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADP\( ^+\)]

2.1e-06 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NADH]

8.3e-05 mol/l

[11]

glucose-fed, exponentially growing E. coli

[NAD\( ^+\)]

0.0026 mol/l

[11]

glucose-fed, exponentially growing E. coli

[ATP]

0.0096 mol/l

[11]

glucose-fed, exponentially growing E. coli

[AMP]

0.00028 mol/l

[11]

glucose-fed, exponentially growing E. coli

[H\( _2\)O]

38.85 mol/l

Concentration of water in water is \(\frac{\frac{m}{V}}{M}\). E.coli is about 70% water. Thus, the water concentration in E.coli is \( 70\% \cdot \frac{1000 \frac{g}{l}}{18.01 g/mol} = 38.85 \frac{mol}{l} \)

Sources

[1] Enzyme Kinetics: Principals and Methods by Hans Bisswanger (2002)

[2] Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170

[3] Thiolases of Escherichia coli: purification and chain length specificities Feigenbaum, J.; Schulz, H.; Journal of Bacteriology, Volume 122, Issue 2, May 1975, Pages 407-411

[4] Characterization of a b-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis; Microbiology,Volume 156, July 2010, Pages 1975-1982

[5] Purification and Properties of NADP-Dependent L(+)-3-Hydroxybutyryl -CoA Dehydrogenase from Clostridium kluyveri; Eur. J. Biochem. 32,51-56 (1973)

[6] Purification and Characterization of Crotonase from Clostridium acetobutylicum; The journal of Biological Chemistry, Volume 247, Number 16, August 1972, Pages 5266-5271

[7] Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837

[8] Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796

[9] Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities; PNAS | January 2, 2013 | vol. 110 | no. 1 | 87–92

[10] Production of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase, Khara et al (2013)

[11] Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009