Difference between revisions of "Team:Bordeaux/Description"
Line 44: | Line 44: | ||
<!-- PHYTOALEXINS ---------------------------------------------------------------------------------------------- --> | <!-- PHYTOALEXINS ---------------------------------------------------------------------------------------------- --> | ||
− | + | <div class="col-lg-10 col-lg-offset-1"> | |
+ | <p align="justify" style="text-indent: 3vw;"> More precisely, applied to grapevine plants, <b> sulfated ß-glucans </b> induce the <b> accumulation of phytoalexins </b> (organic antimicrobial substances) and the <b> expression of a set of Pathogenesis-Related proteins </b>. In plants, the fact that oligosaccharides must carry crucial sulfates for their biological function suggests that <b>chemical sulfation</b> of oligosaccharides <b>can improve their biological properties.</b> In recents studies, compared to Laminarin (ß-glucan), its sulfated derivative triggered an enhanced immunity against <i>P. viticola</i> in <i>V. vinifera</i> and a stronger immunity against TMV in <i>Nicotiana tabacum</i>. The results indicate that the chemical modification of an elicitor, such as sulfated derivative of ß-glucans, could improve its resistance-inducer efficiency. Moreover, if a ß-glucan is a substrate for plant ß-1,3 glucanase, its <b>sulfation</b> clearly <b>protects the molecule</b> from its enzymatic degradation. Thus, a basal activity of plant glucanases can degrade ß-glucans and consequently releases short inactive ß-glucans; whereas sulfated derivatives still remain active molecules during a longer period. This might explain the higher resistance induced by ß-glucan sulfates compared to ß-glucans. </p> | ||
<p align="justify"style="text-indent: 3vw;"> Furthermore, non-sulfated Curdlan doesn't trigger the through a mutant gene: pmr4. This <b>mutant</b> is resistant to mildew infections but is <b> unable to induce Pathogenesis-Related proteins expression </b>. Also, activation of a Pathogenesis-Related protein called PR1 in grapevine is regulated by the <b> salicylic acid signaling pathway </b>. The lack of PR1 expression in non-sulfated Curdlan-treated grapevine could be explained by a negative feedback of glucan. This is demonstrated by the study of a double mutant of pmr4 which restore the susceptibility to mildew. It suggests that linear β-1,3 glucan negatively regulates the salicylic acid pathway. So, <b>sulfation of the glucan would counteract the negative feedback effect. </b> [16]</p> | <p align="justify"style="text-indent: 3vw;"> Furthermore, non-sulfated Curdlan doesn't trigger the through a mutant gene: pmr4. This <b>mutant</b> is resistant to mildew infections but is <b> unable to induce Pathogenesis-Related proteins expression </b>. Also, activation of a Pathogenesis-Related protein called PR1 in grapevine is regulated by the <b> salicylic acid signaling pathway </b>. The lack of PR1 expression in non-sulfated Curdlan-treated grapevine could be explained by a negative feedback of glucan. This is demonstrated by the study of a double mutant of pmr4 which restore the susceptibility to mildew. It suggests that linear β-1,3 glucan negatively regulates the salicylic acid pathway. So, <b>sulfation of the glucan would counteract the negative feedback effect. </b> [16]</p> |
Revision as of 07:12, 16 September 2015