Difference between revisions of "Team:Warwick/Modeling"

Line 68: Line 68:
  
 
The previous model of using DNA as a glue could create 3D shapes but would need vast amounts of unique zinc fingers. This wasn't possible with our time frame so we cam up with a model which could create a 3D structure from the minimum amount of unique DNA using tetrahedrons as a base to build from. Cells would then be bound to the outside.<br>
 
The previous model of using DNA as a glue could create 3D shapes but would need vast amounts of unique zinc fingers. This wasn't possible with our time frame so we cam up with a model which could create a 3D structure from the minimum amount of unique DNA using tetrahedrons as a base to build from. Cells would then be bound to the outside.<br>
<br><br><br>
+
<br><br>
  
  
Line 76: Line 76:
 
<p><a href="Modelling5"><h5>Cube Construction</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/c/c5/Sexalea.png" align="right" height="100px" width="100px" border="1px"></p> </p></a>
 
<p><a href="Modelling5"><h5>Cube Construction</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/c/c5/Sexalea.png" align="right" height="100px" width="100px" border="1px"></p> </p></a>
  
Similar to the previous, this uses cubes to create 3D shapes and discusses the minimum size need for DNA origami shapes.<br><br><br>
+
The tetrahedron construction model could only create sphere shaped 3D structures. The cells that bound to the outside couldn't be controlled as well as we hoped so we came up with a new model that could. This page discusses the use of cube shaped DNA to create a shape where the cells bonded to the outside could be chosen.<br><br>
 
  <br>
 
  <br>
  

Revision as of 09:34, 17 September 2015

Warwick iGEM 2015