Difference between revisions of "Team:HUST-China/Design"

(Prototype team page)
 
Line 1: Line 1:
{{HUST-China}}
+
<HTML>
<html>
+
<head lang="en">
 +
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
 +
<meta charset="UTF-8">
 +
<meta name="viewport" content="width=device-width,initial-scale=1">
  
<h2>Design</h2>
+
<title>Team:HUST-China:Modeling</title>
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2015.igem.org/Team:HUST-China/CSS?action=raw&ctype=text/css" />
  
<p>
+
<script type="text/javascript" src="https://2015.igem.org/Team:HUST-China/jquery?
By talking about your design work on this page, there is one medal criterion that you can attempt to meet, and one award that you can apply for. If your team is going for a gold medal by building a functional prototype, you should tell us what you did on this page. If you are going for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Applied Design award</a>, you should also complete this page and tell us what you did.
+
action=raw&ctype=text/javascript"></script>
</p>
+
  
<div class="highlightBox">
+
<script type="text/javascript" src="https://2015.igem.org/Team:HUST-China/JS?
<h4>Note</h4>
+
action=raw&ctype=text/javascript"></script>
<p>In order to be considered for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Best Applied Design award</a> and/or the <a href="https://2015.igem.org/Judging/Awards#Medals">functional prototype gold medal criterion</a>, you must fill out this page.</p>
+
</div>
+
  
<p>This is a prize for the team that has developed a synthetic biology product to solve a real world problem in the most elegant way. The students will have considered how well the product addresses the problem versus other potential solutions, how the product integrates or disrupts other products and processes, and how its lifecycle can more broadly impact our lives and environments in positive and negative ways.</p>
+
<style>
 +
  /*改默认设定*/
 +
#footer-box,#sponsor-box,.shadow3,#content,table,#catlinks {
 +
    background-color: transparent;
 +
}
 +
.mediawiki.ltr.ns-0.ns-subject.page-Team_HUST-China
 +
#globalWrapper #top-section #p-logo a img {
 +
    visibility:hidden;
 +
}
 +
 +
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading, .visualClear{display: none;}
 +
#globalWrapper, #content,#bodyContent { /*-- changes default wiki settings --*/
 +
    width: 100%;
 +
    height: 100%;
 +
    border: 0px;
 +
    background-color: transparent;
 +
    margin: 0px;
 +
    padding: 0px;
 +
  top: 0px;
 +
}
 +
#top_menu_under{height: 0px;}
  
<p>
+
html, .wrapper { /*-- changes default wiki settings --*/
If you are working on art and design as your main project, please join the art and design track. If you are integrating art and design into the core of your main project, please apply for the award by completing this page.
+
    width: 100%;
</p>
+
    height: 100%;
 +
    background-color: transparent; 
 +
top: 0px;
 +
}
  
</div>
+
table{width: 780px;
 +
margin-top: 20px;
 +
margin-bottom: 20px;
 +
}
 +
table tr,th,td{ width: auto;
 +
padding: 5px;
 +
text-align: center;}
 +
.viewport, .container {
 +
max-width: 1349px;
 +
          top: 0px;}
  
 +
.picture{ width: 750px;
 +
    height: auto;
 +
        margin-bottom:30px;
 +
        margin-left: 30px;}
 +
.picture2{ width: auto;
 +
    height: 400px;
 +
        margin-bottom:30px;
 +
        margin-left: 50px;}
 +
 +
 +
#mid{width: 1349px;
 +
margin: 0 auto;}
 +
 +
 +
 +
      body{ background-color: white;
 +
position: absolute;
 +
margin: 0;
 +
    font-family:Arial,Verdana,Sans-serif;
 +
color: black;
 +
z-index: 0}
 +
 +
.header{position: fixed;
 +
    width: 1348px;
 +
                text-align:center;
 +
  height:200px;
 +
  margin-top: 0px;
 +
  padding-top: 5px;
 +
  background-image: url(https://static.igem.org/mediawiki/2015/d/d7/HUST_daohang.png);
 +
  background-size:100% 100%;
 +
    filter:alpha(opacity:30);opacity:0.95;  -moz-opacity:0.4; -khtml-opacity: 0.4;
 +
  z-index:1;}
 +
 +
.first-menu{float: left;
 +
margin-left: 0%;
 +
font-size:19px;
 +
    max-width: 22%;
 +
                padding-top:5px;
 +
            z-index: 2;}
 +
 +
.other-menu{float: left;
 +
margin-left:1.2%;
 +
font-size:19px;
 +
    max-width: 22%;
 +
                    padding-top:5px;
 +
                    z-index: 2;}
 +
 +
.navbar .nav > li .dropdown-menu {margin: 0;}
 +
.navbar .nav > li:hover .dropdown-menu {display: block;}
 +
 +
a:link,a:visited {
 +
color:#002855;
 +
text-decoration:none;
 +
            }
 +
a:hover,a:active {
 +
color:#007fff;
 +
text-decoration:underline;
 +
}
 +
 +
ul.ul{list-style-type:none;
 +
list-style-image: none;
 +
margin-bottom: 0px;
 +
padding-left: 0px;}
 +
li.li{margin-top: 0px;
 +
list-style-image: none;}
 +
 +
#maodian ul{list-style-type:none;
 +
margin-bottom: 0px;
 +
padding-left: 0px;
 +
                margin-left:0px;}
 +
 +
 +
#pic{  background-image: url(https://static.igem.org/mediawiki/2015/d/d6/HUST_modeling.jpg);
 +
                width:1349px;
 +
                height:650px;
 +
              float: left;
 +
              z-index: 0;
 +
          background-size: 100%,100%;
 +
          margin-top: 0px;}
 +
 
 +
.title{width: 900px; 
 +
                height:300px;
 +
              margin-left: 18%;
 +
                margin-top:80px;}
 +
    .pic_a img{width: 135px;
 +
    height: 120px;
 +
    }
 +
    .pic_a{float: left;
 +
            margin-top:100px;
 +
            width: 1349px;
 +
            text-align:center;
 +
              }
 +
 +
#maodian{float: left;
 +
              top: 50px;
 +
  position: fixed;
 +
  margin-top: 70px;  
 +
  z-index: -1;
 +
margin-left: 0px; }
 +
#maodian img{ padding-left: 2% ;
 +
width:150px;
 +
height: auto;
 +
}
 +
.btn
 +
{ background-color:#5d96a3;
 +
margin-left: 0px;
 +
width: 200px;
 +
font-size: 14px;
 +
padding-left: 1px;
 +
    }
 +
 +
.btn:hover,.btn:active {
 +
color:white;
 +
background-color:#004c6f;}
 +
 +
   
 +
    .description {margin-left: 20%;
 +
              margin-right: 20%;
 +
              margin-top: 50px;
 +
              text-align: left;
 +
              float: left;
 +
              font-size:16px;}
 +
    .description p{font-size: 16px;
 +
                        width:809px;}
 +
     
 +
    .dongxi{height:50px;}
 +
 +
 +
 +
      .scroll{
 +
width:100px;
 +
height:120px;
 +
background-image: url(https://static.igem.org/mediawiki/2015/8/87/Top.png);
 +
background-size: 100% 100%;
 +
position:fixed;
 +
right:10px;
 +
bottom:20px;
 +
cursor:pointer;
 +
opacity:0.6;
 +
}
 +
 +
 +
</style>
 +
<!--点击TOP回滚到顶部js如下:-->
 +
<script type="text/javascript">
 +
$(function(){
 +
showScroll();
 +
function showScroll(){
 +
$(window).scroll( function() {
 +
var scrollValue=$(window).scrollTop();
 +
scrollValue > 100 ? $('div[class=scroll]').fadeIn():$('div[class=scroll]').fadeOut();
 +
} );
 +
$('#scroll').click(function(){
 +
$("html,body").animate({scrollTop:0},500);
 +
});
 +
}
 +
})
 +
</script>
 +
<script type="text/javascript">
 +
$(function(){
 +
showdes();
 +
function showdes(){
 +
$('#to_des').click(function(){
 +
$("html,body").animate({scrollTop:720},800);
 +
});
 +
}
 +
})
 +
</script>
 +
</head>
 +
 +
<body >
 +
<div id="mid">
 +
<!--上栏-->
 +
 +
<div class="container header" >
 +
 +
<!--悬浮菜单-->
 +
<div class="navbar">
 +
    <div class="navbar-inner">
 +
      <div class="container">
 +
          <ul class="nav">
 +
              <li class="first-menu"><a href="https://2015.igem.org/Team:HUST-China">HOME</a>
 +
                </li>    
 +
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Background">PROJECT<b class="caret"></b></a>
 +
                <ul class="dropdown-menu">
 +
                                <li><a href="https://2015.igem.org/Team:HUST-China/Background">Background</a></li>
 +
                <li class="divider"></li>
 +
                <li><a href="https://2015.igem.org/Team:HUST-China/Description">Description</a></li>
 +
                <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Design">Design</a></li>         
 +
                    </ul>
 +
                        </li>
 +
 +
                        <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Results">WETLAB<b class="caret"></b></a>
 +
                <ul class="dropdown-menu">
 +
<li><a href="https://2015.igem.org/Team:HUST-China/Results">Results</a></li>
 +
                        <li class="divider"></li>                      
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Experiments">Experiments&protocol</a></li>
 +
                        <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/InterLab Study">InterLab Study</a></li>
 +
                        <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Notebook">Notebook</a></li>     
 +
                    </ul>
 +
                        </li>
 +
 +
                        <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Basic_part">PARTS<b class="caret"></b></a>
 +
                <ul class="dropdown-menu">                        
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part">Basic Parts</a></li>
 +
                        <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part#2">Composite Parts</a></li> 
 +
                    </ul>
 +
                        </li>
 +
               
 +
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Modeling">MODELING<b class="caret"></b></a>
 +
                            <ul class="dropdown-menu">
 +
                          <li><a href="https://2015.igem.org/Team:HUST-China/Modeling on Cellular Level">Modeling on Cellular Level</a></li>
 +
                          <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Modeling on Ecosystem Level">Modeling on Ecosystem Level</a></li>
 +
                    </ul>
 +
                </li>
 +
 +
                               
 +
                 
 +
                <li class="dropdown other-menu" id="accountmenu">
 +
                    <a  href="https://2015.igem.org/Team:HUST-China/Practices">HUMAN PRACTICES</a>
 +
                                         
 +
                </li>
 +
 +
              <li class="dropdown other-menu" id="accountmenu">
 +
                    <a class="dropdown-toggle" data-toggle="dropdown" href="https://2015.igem.org/Team:HUST-China/Safety">OTHERS<b class="caret"></b></a>
 +
                    <ul class="dropdown-menu">
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Safety">Safety</a></li>
 +
                        <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Collaborations">Collaborations</a></li>
 +
                        <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Attributions">Attributions</a></li>
 +
                        <li class="divider"></li>                   
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Team">Team</a></li>
 +
                        <li class="divider"></li>                   
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Achievements">Achievements</a></li>
 +
                    </ul>
 +
              </li>
 +
          </ul>
 +
      </div>
 +
      </div>
 +
    </div>
 +
    <script type="text/javascript">
 +
        $(document).ready(function () {
 +
          $('.dropdown-toggle').dropdown(); }); </script>
 +
</div>
 +
<!--标题栏-->
 +
<div id="pic" >
 +
<img class="title" src="https://static.igem.org/mediawiki/2015/c/c4/HUST_MODELING.png"/>
 +
<br>
 +
<div class="pic_a" >
 +
    <img style="cursor:pointer;" id="to_des" src="https://static.igem.org/mediawiki/2015/8/80/White.png"/>
 +
</div>
 +
</div>
 +
 +
<!--侧边栏-->
 +
<div id="maodian">
 +
<img src="https://static.igem.org/mediawiki/2015/d/da/Maodian.png" >
 +
<ul class="ul" >
 +
<li class="li"><a href="#1" class="btn btn-default btn-lg">Modeling on Ecosystem Level</a></li>
 +
<li class="li"><a href="#2" class="btn btn-default btn-lg">The “wake-up” problem</a></li>
 +
<li class="li"><a href="#3" class="btn btn-default btn-lg">The permeation problem</a></li>
 +
<li class="li"><a href="#4" class="btn btn-default btn-lg">Robustness Analysis</a></li>
 +
</ul>
 +
</div>
 +
 +
 +
<!--描述,只在这里编写,其他内容都不动,但最后要整个copy-->
 +
<div align="center"  class="description"><a name="1"></a><br><div  class="dongxi"></div>
 +
    <h2 style="color:black" align="left"><b>Design</b></h2><br>
 +
    <p>After verifying the adhesion of our surface displayed Si-tag and secreted Mcfp-3, we decide to stimulate the real working conditions to confirm our engineered strain’s ability to solve practical problems in the real environment. </p>
 +
      <p> Considering the real-world conditions, we urgently want to know whether our Euk.cement cell diffuse into the sands well? So firstly, we used modeling to stimulate the diffusion situation that how the cells move in the seabed. The modeling simplified some real situations reasonably. We hope to make our design of verification fit real world better, and can give guidance to the ultimate working plan in the real seabed environment.</p>
 +
      <p><a href="https://2015.igem.org/Team:HUST-China/Modeling_on_Ecosystem_Level ">(Click HERE to see more details of our modeling)</a></p>
 +
<p>The conclusions we got from the modeling:<br>
 +
-The Euk.Cement permeates very efficiently over a large space. Therefore, perhaps we have to enclose it with fence.<br>
 +
-the big particles such as rocks or other materials mixed in sands have little effect on the Euk.Cement permeation.<br>
 +
-The Euk.Cement distributed quite evenly in the whole space they spread but not densely at the surface of the sands.<br>
 +
</p>
 +
<p>With the support from modeling, it seems that we don’t need to worry so much about the diffusion. High diffusion efficiency benefits a lot in the real world situation. And we also paid much attention to the safety of project, so we prepared a container for our strains.</p>
 +
<p>We finally started to the design of our special device.</p>
 +
<p>It is obviously that the physical and chemical indicators, like the pH or temperature, will not fluctuate acutely in the sea. </p>
 +
<p>Therefore, we tried to assemble a device by the things we can easily get in biological lab to build a relatively stable environment of sandy seabed.</p>
 +
<p>We referred to a number of verification methods in the literature concerning microbial reinforcement and the microporous material commonly used measurement instruments in civil engineering.</p>
 +
                      <div >
 +
                                      <img class="picture" src="https://static.igem.org/mediawiki/2015/5/5e/Design-fig1.png
 +
">
 +
<div class="pizhu">Figure 1:devices used in civil engineering</div>
 +
</div>
 +
<p>This realistic condition’s verification design combines both traditional biological experiments and the concept of Civil Engineering Experiment. Ultimately, we have a following device, DIY for our verification:<br>
 +
                      <div >
 +
                                      <img class="picture" src="此处应有原理图">
 +
<div class="pizhu">Figure 2:The principle of device that we designed</div>
 +
</div>
 +
                      <div >
 +
                                      <img class="picture" src="https://static.igem.org/mediawiki/2015/4/4b/Design-fig3.png">
 +
<div class="pizhu">Figure 3:devices used in our lab</div>
 +
</div>
 +
</p>
 +
<p>We used 50ml glass syringe to simulate our operating environment, and put quartz sand mixture on the bottom of glass syringe. The upper of the syringe was filled with salt solution to simulate the real environment with salt stress.</p>
 +
<p>The experiment was in room temperature, we sealed the top of glass syringe after pumping yeast culture into syringe. Referring to the papers, we replaced the culture every 3 hours for a cycle.<a href="https://2015.igem.org/Team:HUST-China/Experiments#4
 +
"> (Click HERE to see more details :Verification Experiments -part 4)</a></p>
 +
      <h3 style="color:black" align="left"><b>Result:</b></h3><br>
 +
<div class="box">
 +
<img class="picture" src="https://static.igem.org/mediawiki/2015/8/84/Result-fig6.png">
 +
<div class="pizhu">Fig 4: Sands cementation with Euk.Cement. A: Sands cementation test was carried out in lab with trial column and quartz sands. B, C: Sands treated with Euk.cement cells (Si-tag+Mcfp3) form cementation in columns. We can see sands were stacked together by microscopy. D, E: Sands treated with wildtype control cells cannot form cementation.</div>
 +
</div>
 +
<p>In fact, the results really exceeded our expectations. Even under the salt stress, our marine yeast still performed excellently.After half of the processing time compared to reference, we get a complete consolidation result, a consolidated sand column. We believe our hard-working marine strains can survive and work for longer time.</p>
 +
<p>We can proudly announce that our Euk.cement can indeed play a role in the real sandy seabed environment. And it has the ability to build artificial reefs with different intensity in a way totally different from the traditional one. Our design of Euk.cement is an environmental-friendly, energy-friendly biological reinforcement mthod, to resolve our concerns on environment.</p>
 +
<p>Combining the modeling and the experiment result, we put forward a reasonable implementation method:<br>
 +
The engineered yeast must be stored in container with a constant light lamp (inhibition device). It can be transported to appointed place in a normal concrete truck in which sands and Euk.cement can be mixed in darkness and cementation is started in advance. Or we can also transport Euk.cement to appointed place with light, and then mixed with local sands in darkness to initiate system working. In either way, after about 60 hours mix in darkness, the container together with sands and working Euk.cement can be sink deep underwater to the target region that is sealed with fence. The sands mixed with Euk.cement are released. Cementation will finally be performed silently. Besides of fences, the Si-tag displayed on cell surface can further limit the diffusion of cells. So we can put the cementation under control.</p>
 +
<p>Throughout the design we can see that our engineering yeast does have the ability to work under realistic conditions, and we also found some shortcomings, its bond strength still can’t replace the traditional chemical or mechanical methods. But this does not prevent our footsteps. Mechanical reinforcement needs a lot of energy, and the use of chemical reagents can easily pollute the environment. Nowadays, this traditional methods do is being widely used, but this environmental- unfriendly technology will be eliminated one day.</p>
 +
<p>We believe that, in the near future, micro-consolidation based on synthetic biology will become the most valuable technology of human being. It will help build a more wonderful world. And we, iGEMers are making any efforts on it!  </p>
 +
</div>
 +
         
 +
<!--下一页
 +
<a href="https://2015.igem.org/Team:HUST-China/Experiments" class="nextpage">
 +
Next >>
 +
</a>-->
 +
<!--top-->
 +
<div class="scroll" id="scroll" style="display:none;"></div>
 +
</div>
 +
 +
 +
</body>
 
</html>
 
</html>

Revision as of 13:55, 17 September 2015

Team:HUST-China:Modeling



Design


After verifying the adhesion of our surface displayed Si-tag and secreted Mcfp-3, we decide to stimulate the real working conditions to confirm our engineered strain’s ability to solve practical problems in the real environment.

Considering the real-world conditions, we urgently want to know whether our Euk.cement cell diffuse into the sands well? So firstly, we used modeling to stimulate the diffusion situation that how the cells move in the seabed. The modeling simplified some real situations reasonably. We hope to make our design of verification fit real world better, and can give guidance to the ultimate working plan in the real seabed environment.

(Click HERE to see more details of our modeling)

The conclusions we got from the modeling:
-The Euk.Cement permeates very efficiently over a large space. Therefore, perhaps we have to enclose it with fence.
-the big particles such as rocks or other materials mixed in sands have little effect on the Euk.Cement permeation.
-The Euk.Cement distributed quite evenly in the whole space they spread but not densely at the surface of the sands.

With the support from modeling, it seems that we don’t need to worry so much about the diffusion. High diffusion efficiency benefits a lot in the real world situation. And we also paid much attention to the safety of project, so we prepared a container for our strains.

We finally started to the design of our special device.

It is obviously that the physical and chemical indicators, like the pH or temperature, will not fluctuate acutely in the sea.

Therefore, we tried to assemble a device by the things we can easily get in biological lab to build a relatively stable environment of sandy seabed.

We referred to a number of verification methods in the literature concerning microbial reinforcement and the microporous material commonly used measurement instruments in civil engineering.

Figure 1:devices used in civil engineering

This realistic condition’s verification design combines both traditional biological experiments and the concept of Civil Engineering Experiment. Ultimately, we have a following device, DIY for our verification:

Figure 2:The principle of device that we designed
Figure 3:devices used in our lab

We used 50ml glass syringe to simulate our operating environment, and put quartz sand mixture on the bottom of glass syringe. The upper of the syringe was filled with salt solution to simulate the real environment with salt stress.

The experiment was in room temperature, we sealed the top of glass syringe after pumping yeast culture into syringe. Referring to the papers, we replaced the culture every 3 hours for a cycle. (Click HERE to see more details :Verification Experiments -part 4)

Result:


Fig 4: Sands cementation with Euk.Cement. A: Sands cementation test was carried out in lab with trial column and quartz sands. B, C: Sands treated with Euk.cement cells (Si-tag+Mcfp3) form cementation in columns. We can see sands were stacked together by microscopy. D, E: Sands treated with wildtype control cells cannot form cementation.

In fact, the results really exceeded our expectations. Even under the salt stress, our marine yeast still performed excellently.After half of the processing time compared to reference, we get a complete consolidation result, a consolidated sand column. We believe our hard-working marine strains can survive and work for longer time.

We can proudly announce that our Euk.cement can indeed play a role in the real sandy seabed environment. And it has the ability to build artificial reefs with different intensity in a way totally different from the traditional one. Our design of Euk.cement is an environmental-friendly, energy-friendly biological reinforcement mthod, to resolve our concerns on environment.

Combining the modeling and the experiment result, we put forward a reasonable implementation method:
The engineered yeast must be stored in container with a constant light lamp (inhibition device). It can be transported to appointed place in a normal concrete truck in which sands and Euk.cement can be mixed in darkness and cementation is started in advance. Or we can also transport Euk.cement to appointed place with light, and then mixed with local sands in darkness to initiate system working. In either way, after about 60 hours mix in darkness, the container together with sands and working Euk.cement can be sink deep underwater to the target region that is sealed with fence. The sands mixed with Euk.cement are released. Cementation will finally be performed silently. Besides of fences, the Si-tag displayed on cell surface can further limit the diffusion of cells. So we can put the cementation under control.

Throughout the design we can see that our engineering yeast does have the ability to work under realistic conditions, and we also found some shortcomings, its bond strength still can’t replace the traditional chemical or mechanical methods. But this does not prevent our footsteps. Mechanical reinforcement needs a lot of energy, and the use of chemical reagents can easily pollute the environment. Nowadays, this traditional methods do is being widely used, but this environmental- unfriendly technology will be eliminated one day.

We believe that, in the near future, micro-consolidation based on synthetic biology will become the most valuable technology of human being. It will help build a more wonderful world. And we, iGEMers are making any efforts on it!