Difference between revisions of "Team:Queens Canada/AFP Scaffold"
Line 50: | Line 50: | ||
<div class="intro"> | <div class="intro"> | ||
− | <h1>THE ICE QUEEN</h1> | + | <h1>THE ICE QUEEN: AFP-SCAFFOLD COMPLEX</h1> |
<p>Among the challenges in preserving harvested organs for transplantation is the time limit for which tissues remain undamaged outside of the human body. A potential solution to this limitation is the introduction of phenomena used by other organisms to enable sub-cooling of cells. In 2005, researchers in Israel and Californa<sup>1,2</sup> successfully preserved rat hearts in University of Wisconsin (UW) solution<sup>3</sup> with unmodified Type I and Type III antifreeze proteins for 24 hours at -1.3 <sup>o</sup>C with near 100% organ survival and better viability scores than those stored at 4 <sup>o</sup>C with tradition UW solution<sup>1,2</sup>. The viability was scored based on observations at 5, 30, and 90 minutes and 24-hour post-transplantation observation of the recipient rats<sup>1</sup>.</p> | <p>Among the challenges in preserving harvested organs for transplantation is the time limit for which tissues remain undamaged outside of the human body. A potential solution to this limitation is the introduction of phenomena used by other organisms to enable sub-cooling of cells. In 2005, researchers in Israel and Californa<sup>1,2</sup> successfully preserved rat hearts in University of Wisconsin (UW) solution<sup>3</sup> with unmodified Type I and Type III antifreeze proteins for 24 hours at -1.3 <sup>o</sup>C with near 100% organ survival and better viability scores than those stored at 4 <sup>o</sup>C with tradition UW solution<sup>1,2</sup>. The viability was scored based on observations at 5, 30, and 90 minutes and 24-hour post-transplantation observation of the recipient rats<sup>1</sup>.</p> |
Revision as of 18:48, 17 September 2015