Difference between revisions of "Team:OUC-China/Modeling/Thermosensitive Regulator"

Line 113: Line 113:
 
                 </p>
 
                 </p>
 
                 <p>  
 
                 <p>  
                 Thus in order to validate the feasibility of the T7platform, we got two targets in this part to achieve:
+
                 Thus in order to validate the feasibility of the T7 platform, we got two targets in this part to achieve:
 
                 <br>
 
                 <br>
 
                   1.To analyze platform’s sensitivity on the temperature change according to the intein’s splicing efficiency;
 
                   1.To analyze platform’s sensitivity on the temperature change according to the intein’s splicing efficiency;
Line 200: Line 200:
 
<div class="col-md-4">
 
<div class="col-md-4">
 
                             <img src="https://static.igem.org/mediawiki/2015/1/11/OUC-China_Modeling_Thermosensitive-Regulator_14.png" alt="" class="img-responsive">
 
                             <img src="https://static.igem.org/mediawiki/2015/1/11/OUC-China_Modeling_Thermosensitive-Regulator_14.png" alt="" class="img-responsive">
                             <span><center>(A)</center></span>
+
                             <span><center>(A) T7 polymerase expression level</center></span>
 
                         </div>
 
                         </div>
  
 
                 <div class="col-md-4">
 
                 <div class="col-md-4">
 
                             <img src="https://static.igem.org/mediawiki/2015/b/b1/OUC-China_Modeling_Thermosensitive-Regulator_15.png" alt="" class="img-responsive">
 
                             <img src="https://static.igem.org/mediawiki/2015/b/b1/OUC-China_Modeling_Thermosensitive-Regulator_15.png" alt="" class="img-responsive">
                             <span><center>(B)</center></span>
+
                             <span><center>(B) mRNA of GFP expression level</center></span>
 
                         </div>
 
                         </div>
  
 
                 <div class="col-md-4">
 
                 <div class="col-md-4">
 
                             <img src="https://static.igem.org/mediawiki/2015/e/e1/OUC-China_Modeling_Thermosensitive-Regulator_16.png" alt="" class="img-responsive">
 
                             <img src="https://static.igem.org/mediawiki/2015/e/e1/OUC-China_Modeling_Thermosensitive-Regulator_16.png" alt="" class="img-responsive">
                             <span><center>(C)</center></span>
+
                             <span><center>(C) GFP expression level</center></span>
 
                         </div>
 
                         </div>
 
</div>
 
</div>
<span><center>(A) T7 polymerase expression level; (B) mRNA of GFP expression level; (C) GFP expression level.</center></span>
 
  
 
                 <h2>Sensitive analysis </h2>
 
                 <h2>Sensitive analysis </h2>
Line 234: Line 233:
 
<div class="col-md-6">
 
<div class="col-md-6">
 
                             <img src="https://static.igem.org/mediawiki/2015/a/a3/OUC-China_Modeling_Thermosensitive-Regulator_21.png" alt="" class="img-responsive">
 
                             <img src="https://static.igem.org/mediawiki/2015/a/a3/OUC-China_Modeling_Thermosensitive-Regulator_21.png" alt="" class="img-responsive">
                             <span><center>(A)</center></span>
+
                             <span><center>(A) the GFP in time scale </center></span>
 
                         </div>
 
                         </div>
 
                 <div class="col-md-6">
 
                 <div class="col-md-6">
 
                             <img src="https://static.igem.org/mediawiki/2015/6/6c/OUC-China_Modeling_Thermosensitive-Regulator_22.png" alt="" class="img-responsive">
 
                             <img src="https://static.igem.org/mediawiki/2015/6/6c/OUC-China_Modeling_Thermosensitive-Regulator_22.png" alt="" class="img-responsive">
                             <span><center>(B)</center></span>
+
                             <span><center>(B)the mRNA of GFP in time scale</center></span>
 
                         </div>
 
                         </div>
 
                  
 
                  

Revision as of 22:25, 17 September 2015

<!DOCTYPE html> Team:OUC-China Member

Thermosensitive Regulator

This year, we firstly used RNA thermometer as the Thermosensitive Regulator. As this was a part constructed by other team, our wet lab members could perform the experiments based on the former teams’ experiences. Consequently, we didn’t construct the model of RNA thermometer.

Except for RNA thermometer, we designed the T7 platform as an alternative for Thermosensitive Regulator. It contains arabinose induced promoter, T7 polymerase inserted by thermosensitive intein, T7 promoter and GFP. Combined with Magnetic Receiver, T7 platform should take charge of controlling reporter proteins’ expression level under the temperature changing.
(If you want to learn more details about the thermosensitive regulator, you can click here)

Thus in order to validate the feasibility of the T7 platform, we got two targets in this part to achieve:
1.To analyze platform’s sensitivity on the temperature change according to the intein’s splicing efficiency;
2.Determine the stability of GFP’s expression level to ensure the regulating effect.

Deterministic Model

Schematic Diagram:

Simplified Schematic Diagram:

We translated the schematic diagram into the following ordinary differential equations:

The first equation describes the expression level of T7 polymerase controlled by arabinose. Because the complex bio-process was a induction process, we used Hill function to describe the production rate.

The second equation describes the amount of mRNA of GFP transcribed by T7 polymerase. In this equation we used Michaelis-Menten function to explain its enzyme kinetics.

The third equation describes the translation rate from mRNA to GFP.

Parameter Choice

Degradation Rate of T7 Polymerase β1

Because there be a degradation label “LVA tag” on the T7 polymerase, the degradation rate of it was larger than the common condition. After searched many articles we got the approximate degradation of it.

Intein Splicing constant α

The most important parameter that we considered was α.GFP’s expression quantity would fluctuate with the change of α. And it influenced the platform’s sensitivity on the temperature change.

We started from the condition when the initial α equaled to a number between 0.01% and 20% when the temperature didn’t meet the threshold. Then the α changed into a number between 70% and 95% while the temperature got over the threshold. And the comparing results were shown as follow:

(A)
(B)
(C)
(D)

Initial Results

With the parameters chosen above and α equals to 100%, we simulated the expression level of the T7 platform when the temperature got over threshold, which was shown as blow:

(A) T7 polymerase expression level
(B) mRNA of GFP expression level
(C) GFP expression level

Sensitive analysis

We performed sensitivity analysis to discover ways to control the expression quantity of the final interest proteins and find ways to adjust the accuracy of the platform.

Local sensitivity analysis involves computing the relative change of the steady state with respect to a change in the parameter. We used MATLAB and sensitivities were calculated for 5% changes in the parameters. The sensitivity coefficient was defined as the ratio of the value with changed parameters and the value with unchanged parameters:

And the

Stochastic Model And Noise Analysis

It is important to analyze the noise of the platform

(A) the GFP in time scale
(B)the mRNA of GFP in time scale
(C)
(D)

According to the stochastic model, we calculated the noise value. And the value of the noise, 0.0023 and 0.0224 was very small. Thus we considered our results was receivable.

References

[1] Bintu L, Buchler N E, Garcia H G, et al. Transcriptional regulation by the numbers: models[J]. Current opinion in genetics & development, 2005, 15(2): 116-124.
[2] Rydenfelt M, Cox III R S, Garcia H, et al. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration[J]. Physical Review E, 2014, 89(1): 012702.
[3] Ozbudak E M, Thattai M, Kurtser I, et al. Regulation of noise in the expression of a single gene[J]. Nature genetics, 2002, 31(1): 69-73.
[4] Li G, Rabitz H, Yelvington P E, et al. Global sensitivity analysis for systems with independent and/or correlated inputs[J]. The Journal of Physical Chemistry A, 2010, 114(19): 6022-6032.
[5] Gibson M A, Bruck J. Efficient exact stochastic simulation of chemical systems with many species and many channels[J]. The journal of physical chemistry A, 2000, 104(9): 1876-1889.
[6] Saltelli A, Ratto M, Tarantola S, et al. Sensitivity analysis for chemical models[J]. Chemical reviews, 2005, 105(7): 2811-2828.
[7]Thattai M, Van Oudenaarden A. Intrinsic noise in gene regulatory networks[J]. Proceedings of the National Academy of Sciences, 2001, 98(15): 8614-8619.
[8] Pedraza J M, van Oudenaarden A. Noise propagation in gene networks[J]. Science, 2005, 307(5717): 1965-1969.
[9] Gillespie D T. Exact stochastic simulation of coupled chemical reactions[J]. The journal of physical chemistry, 1977, 81(25): 2340-2361.
[10] Zi Z. Sensitivity analysis approaches applied to systems biology models[J]. Systems Biology, IET, 2011, 5(6): 336-346.
[11] Jones D L, Brewster R C, Phillips R. Promoter architecture dictates cell-to-cell variability in gene expression[J]. Science, 2014, 346(6216): 1533-1536.
[12] Zhang J, Nie Q, He M, et al. An effective method for computing the noise in biochemical networks[J]. The Journal of chemical physics, 2013, 138(8): 084106.
[13] Fortin J P, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles[J]. European Biophysics Journal, 2008, 37(2): 223-228.
[14] Gilles C, Bonville P, Rakoto H, et al. Magnetic hysteresis and superantiferromagnetism in ferritin nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2002, 241(2): 430-440.
[15] Derfus A M, von Maltzahn G, Harris T J, et al. Remotely triggered release from magnetic nanoparticles[J]. ADVANCED MATERIALS-DEERFIELD BEACH THEN WEINHEIM-, 2007, 19(22): 3932.
[16] Wong P, Gladney S, Keasling J D. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose[J]. Biotechnology progress, 1997, 13(2): 132-143.
[17] Stanley S A, Sauer J, Kane R S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles[J]. Nature medicine, 2015, 21(1): 92-98.
[18] Fortin J P, Wilhelm C, Servais J, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia[J]. Journal of the American Chemical Society, 2007, 129(9): 2628-2635.
[19] Huang H, Delikanli S, Zeng H, et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles[J]. Nature nanotechnology, 2010, 5(8): 602-606.
[20] Stanley S A, Gagner J E, Damanpour S, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice[J]. Science, 2012, 336(6081): 604-608.
[21] Lian T, Locke B, Kholodenko Y, et al. Energy flow from solute to solvent probed by femtosecond IR spectroscopy: malachite green and heme protein solutions[J]. The Journal of Physical Chemistry, 1994, 98(45): 11648-11656.
[22] Paulsson J. Summing up the noise in gene networks[J]. Nature, 2004, 427(6973): 415-418.
[23] Erban R, Chapman J, Maini P. A practical guide to stochastic simulations of reaction-diffusion processes[J]. arXiv preprint arXiv:0704.1908, 2007.