Difference between revisions of "Team:Toulouse/Design"
Line 57: | Line 57: | ||
− | + | <div class="group center"> | |
+ | <p class="text"> | ||
+ | Our goal is to create a solution against varroas. In order to use ApiColi to treat varroosis, we designed a trap, named TrApiColi. TrApiColi has been designed in order to take into account ethical | ||
+ | reflection, safety and ease of use for beekeepers. | ||
+ | </p> | ||
+ | </div> | ||
Line 64: | Line 69: | ||
</div> | </div> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<div class="group center"> | <div class="group center"> | ||
Line 188: | Line 189: | ||
<div class="title"> | <div class="title"> | ||
− | <h3> | + | <h3>ApiColi confinement and culture</h3> |
</div> | </div> | ||
<div class="group center"> | <div class="group center"> | ||
<p class="text"> | <p class="text"> | ||
− | + | The use of genetically modified organisms in a field, and because our project is associated with | |
− | + | ||
− | genetically modified organisms in a field, and because our project is associated with | + | |
edible products, underlies both applying of regulations and public interest. | edible products, underlies both applying of regulations and public interest. | ||
− | In this context | + | In this context, we searched a solution being able to isolate our engineered bacteria from |
the environment, but allowing its growth, metabolism and gas diffusion. We found the | the environment, but allowing its growth, metabolism and gas diffusion. We found the | ||
project of the iGEM Groeningen 2012 team which used the polymer TPX® in | project of the iGEM Groeningen 2012 team which used the polymer TPX® in | ||
− | order to contain their bacteria separated of the meat [1]. | + | order to contain their bacteria separated of the meat [1]. |
− | + | TPX® is in fact Polymethylpentene a porous polymer sold by the company MitsuiChemicals (4-methylpentene-1 based polyolefin, Mitsui Chemicals, Inc.), | |
− | + | In order to perform our experiments, we contacted MitsuiChemicals who offered us some samples of TPX®. | |
− | + | ||
<br> | <br> | ||
<br> | <br> | ||
− | To check | + | To check the feasability and safety of our device, several tests have been performed: |
</p> | </p> | ||
</div> | </div> | ||
Line 213: | Line 211: | ||
<ul style="font-size:15px;margin-bottom:10px;"> | <ul style="font-size:15px;margin-bottom:10px;"> | ||
− | <li>Safety test: Impermeability of | + | <li>Safety test: Impermeability of the bag of TPX® to the bacteria |
</li> | </li> | ||
<li>Gas diffusion tests: Permeability of butyric acid and formic acid through the bag of TPX® | <li>Gas diffusion tests: Permeability of butyric acid and formic acid through the bag of TPX® | ||
</li> | </li> | ||
− | <li>Growth tests in TPX®: Culture of the strain <i>E. coli</i> BW25113 | + | <li>Growth tests in TPX®: Culture of the strain <i>E. coli</i> BW25113 in a TPX® bag (<i>ie.</i> in microaerobic conditions, without agitation and miming batch culture condition), as it would be in the field |
</li> | </li> | ||
<li>Bacterial survival over 15 days in microaerobic condition | <li>Bacterial survival over 15 days in microaerobic condition |
Revision as of 22:35, 17 September 2015
Device
Our goal is to create a solution against varroas. In order to use ApiColi to treat varroosis, we designed a trap, named TrApiColi. TrApiColi has been designed in order to take into account ethical reflection, safety and ease of use for beekeepers.
Trap Construction
Since the production of the two pathways are regulated by day light, our bacteria need to be outside of the beehive. Thus, the trap was made to be placed at the entrance of the hive, in order to prevent the entry of the mites.
TrApiColi is composed of four main parts:
The four different parts of our trap
1. A grid in line with the bottom board
The bees usually enter the hive by landing on the bottom board before walking inside. Because of the alignment of the trap with the board, it does not disturb the bee’s comings and goings. The holes are big enough to let the varroas fall through them, but not the bees.
2. A funnel, to channel all the falling varroas
The grid and the funnel
3. A transparent collector, containing the bacteria confined in a special bag
It is designed like a fish bottle trap: the tube from the funnel goes inside the collector to ease the entry of the varroas in the collector while preventing them from exiting. The special bag is described in "TPX bag" part
4. A roof, to protect the trap from the rain
The dimensions of the trap allow it to be plugged to almost every beehives. Indeed, most of the hive types have the exact same entrance. Thanks to that, the trap can be perfectly plugged to the hive by the beekeepers without drilling or cutting it.
The trap was designed using Catia and then 3D printed in order to build a prototype. It is used as a demonstration device for the beekeepers and the general public. This trap could not be tested because the porous plastic used for 3D printing is permeable to liquids and gases. Moreover, the modeling showed that this version of the trap is yet to be optimized to ensure a proper diffusion of our molecules, see more in "Modelling" part.
|
|
The 3D printer used to construct our trap and the result of 3D print: TrApiColi
ApiColi confinement and culture
The use of genetically modified organisms in a field, and because our project is associated with
edible products, underlies both applying of regulations and public interest.
In this context, we searched a solution being able to isolate our engineered bacteria from
the environment, but allowing its growth, metabolism and gas diffusion. We found the
project of the iGEM Groeningen 2012 team which used the polymer TPX® in
order to contain their bacteria separated of the meat [1].
TPX® is in fact Polymethylpentene a porous polymer sold by the company MitsuiChemicals (4-methylpentene-1 based polyolefin, Mitsui Chemicals, Inc.),
In order to perform our experiments, we contacted MitsuiChemicals who offered us some samples of TPX®.
To check the feasability and safety of our device, several tests have been performed:
- Safety test: Impermeability of the bag of TPX® to the bacteria
- Gas diffusion tests: Permeability of butyric acid and formic acid through the bag of TPX®
- Growth tests in TPX®: Culture of the strain E. coli BW25113 in a TPX® bag (ie. in microaerobic conditions, without agitation and miming batch culture condition), as it would be in the field
- Bacterial survival over 15 days in microaerobic condition
- Carbone source test: choice of Carbon source to produce acids during 10 days
- Acid toxicity on E. coli