Difference between revisions of "Team:SZMS 15 Shenzhen/Collaborations"
(Prototype team page) |
|||
Line 1: | Line 1: | ||
− | |||
<html> | <html> | ||
+ | <head> | ||
+ | <meta charset="UTF-8"> | ||
+ | <meta name="viewport" content="target-densitydpi=device-dpi, width=device-width, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no" /> | ||
+ | <link href="https://2015.igem.org/Template:SZMS_15_Shenzhen/indexsccss?action=raw&ctype=text/css" rel="stylesheet" type="text/css"> | ||
+ | <title>Title</title> | ||
+ | </head> | ||
+ | <body> | ||
+ | <div id="menubar"> | ||
+ | <div id="nav-div"> | ||
+ | <ul class="nav-list"> | ||
+ | <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen">Homepage</a></li> | ||
+ | <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/project">Project</a></li> | ||
+ | <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/interlab">Interlab</a></li> | ||
+ | <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/gallery">Gallery</a></li> | ||
+ | <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/teamintro">About us</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div id="content"> | ||
+ | <div class="heading"> | ||
+ | <div class="heading-text"> | ||
+ | <div class="heading-text-title">Collabotations</div> | ||
+ | <div class="heading-text-content"> We have acknowledged that one Ab with wAg + one Ag coming into one Ab with Ag and one wAg is irreversible and the amount of this kind of changes is related to the amount of Ab with wAg(x2) , the amount of Ag (x1) and time. | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="heading-text"> | ||
+ | <div class="heading-text-title"></div> | ||
+ | <div class="heading-text-content"> According to Volterra Model,we can know that ‘dx1/dt=dx2/dt=-k*x1*x2’. | ||
+ | <br><br> | ||
+ | k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’. | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="content2"> | ||
+ | <div class="content2-text"> | ||
+ | <div class="content2-text-title"></div> | ||
+ | <div class="content2-text-content">According to the first equation above,we can know that ‘x2=x1+m’.<br><br> | ||
− | + | We assume that the inchoate value of x1 is x0. | |
− | < | + | </div> |
− | + | </div> | |
− | </ | + | <div class="content2-text"> |
+ | <div class="content2-text-title"></div> | ||
+ | <div class="content2-text-content">‘dx1/dt=dx2/dt=-k*x1*x2’<br><br> | ||
− | + | ’k=pf’<br><br> | |
− | + | ‘x2=x1+m’<br><br> | |
− | + | ||
− | + | ||
− | < | + | |
− | < | + | ‘x1(0)=x0’<br><br> |
− | + | ||
− | < | + | |
− | + | ||
− | < | + | And the program code of matlab is:<br><br> |
− | + | ||
− | < | + | |
− | + | dsolve('Dx1=-p*f*x1*(x1+m)','x1(0)=x0','t')<br><br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | |
+ | ans =<br><br> | ||
+ | m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)<br><br> | ||
+ | |||
+ | x1= m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)<br><br> | ||
+ | |||
+ | We can define the extend of combination as E.<br><br> | ||
+ | |||
+ | ‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’ | ||
</div> | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="bottombar"> | ||
+ | <font class="buttom-intro" color="#555555">Collaborations Team:SZMS_15_Shenzhen</font> | ||
+ | </div> | ||
+ | </body> | ||
+ | |||
</html> | </html> |
Revision as of 23:42, 17 September 2015
Collabotations
We have acknowledged that one Ab with wAg + one Ag coming into one Ab with Ag and one wAg is irreversible and the amount of this kind of changes is related to the amount of Ab with wAg(x2) , the amount of Ag (x1) and time.
According to Volterra Model,we can know that ‘dx1/dt=dx2/dt=-k*x1*x2’.
k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’.
k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’.
According to the first equation above,we can know that ‘x2=x1+m’.
We assume that the inchoate value of x1 is x0.
We assume that the inchoate value of x1 is x0.
‘dx1/dt=dx2/dt=-k*x1*x2’
’k=pf’
‘x2=x1+m’
‘x1(0)=x0’
And the program code of matlab is:
dsolve('Dx1=-p*f*x1*(x1+m)','x1(0)=x0','t')
ans =
m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)
x1= m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)
We can define the extend of combination as E.
‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’
’k=pf’
‘x2=x1+m’
‘x1(0)=x0’
And the program code of matlab is:
dsolve('Dx1=-p*f*x1*(x1+m)','x1(0)=x0','t')
ans =
m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)
x1= m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)
We can define the extend of combination as E.
‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’