Difference between revisions of "Team:TU Delft SamanthasPage/Modeling"

Line 17: Line 17:
 
}
 
}
  
</style>  
+
</style>
 +
  <!-- Page Title -->
  
<div class="container">
+
  <div class="bgmodeling"></div>
  <div class="panel-group" id="accordion_s1" role="tablist" aria-multiselectable="true">
+
  <div class="jumbotron" id="cover">
 +
    <h1>Modeling</h1>
 +
    <p class="lead">..</p>
 +
  </div>
 +
 
 +
<span class="anchor" id="overview"></span>
 +
  <div id="white">
 +
  <div class="jumbotron">
 +
      <div class="container">
 +
      <h1>Overview</h1>
 +
        <!--  <p class="lead text-muted"> Subtitle or summary goes here. Should be short - two or three sentences.</p>
 +
    -->  </div>
 +
    </div>
 +
    <div class="container">
 +
 
 +
  <p class="lead">Our main goal is to make a reproducible biofilm. The strength of the biofilm is determined by the degree of intercellular connectivity through curli fibers. With modeling, it is possible to determine which factors have a strong influence on the intercellular connectivity. For instance, one could argue that a higher csgB nucleator production would lead to more curli fibers and therefore an improved connectivity. But if the csgA production would be limiting, solely short curli chains would be formed possibly preventing the cells to even interconnect. </p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/6/65/Modelling_pic_1.png " style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 1: Illustration depicting the cells interconnecting by curli fibers. The csgA protein is secreted by the cells to the extracellular space. A curli can be formed when the csgA reacts with the nucleator protein csgB, located at the outer membrane of the cells. </figcaption></figure>
 +
 
 +
<p class="lead">The modeling can be divided in 4 sections. In <b>section 1</b>, the csgA production rate, intracellular csgA concentration and csgB membrane concentration are determined. As our csgA production is controlled under the induction of rhamnose, all rates and concentrations are calculated for two levels of induction (0.2% (w/v) and 0.5% (w/v)) rhamnose. In <b>section 2</b>, the rates and concentrations are used in a grid model which is able to make an estimate on the characteristic time of curli formation. In <b>section 3</b> the characteristic time for curli formation is used to predict the strength of the biofilm. Finally, in <b>section 4</b>, an application in MATLAB is presented able to calculate the printing time of a certain figure or shape with our Biolinker printer. To go to either of these sections, click on one of the buttons below or select your section of interest in the modeling submenu!</p>
 +
 
 +
 
 +
    <div class="panel-group" id="accordion_s1" role="tablist" aria-multiselectable="true">
 +
      <div class="panel panel-default">
 +
        <div class="panel-heading panel-title" role="tab" id="heading_s1">
 +
          <a class="collapsed" role="button" data-toggle="collapse" data-parent="accordion_s1" href="#collapse_s1" aria-expanded="false" aria-controls="collapse_s1">
 +
<span class="anchor" id="gene"></span>
 +
<div id="grey">
 +
  <div class="jumbotron">
 +
    <div class="container">
 +
      <h1>Kinetic Modeling</h1>
 +
    </div>
 +
  </div>
 +
  <div class="container">
 +
<span class="anchor" id="accordion1gene"></span>
 +
    <div class="panel-group" id="accordion1" role="tablist" aria-multiselectable="true">
 +
      <div class="row">
 +
                <div class="col-xs-3 col-md-3">
 +
 
 +
          <div class="panel-heading panel-title" role="tab" id="heading1gene">
 +
            <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion1" href="#collapse1gene" aria-expanded="false" aria-controls="collapse1gene">
 +
              <div class="row featurette">
 +
                <img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/e/e9/Tudelft_modeling_gene_abstract.png" style="width:200px; background-size: cover;" alt="Generic placeholder image">
 +
              </div>
 +
            </a>
 +
          </div>
 +
        </div>
 +
        <div class="col-xs-3 col-md-3">
 +
          <div class="panel-heading panel-title" role="tab" id="heading2gene">
 +
            <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion1" href="#collapse2gene" aria-expanded="false" aria-controls="collapse2gene">
 +
              <div class="row featurette">
 +
                <img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/d3/Tudelft_modeling_gene_intro.png" style="width:200px; background-size: cover;" alt="Generic placeholder image">
 +
              </div>
 +
            </a>
 +
          </div>
 +
        </div>
 +
     
 +
        <div class="col-xs-3 col-md-3">
 +
 
 +
          <div class="panel-heading panel-title" role="tab" id="heading3gene">
 +
            <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion1" href="#collapse3gene" aria-expanded="false" aria-controls="collapse3gene">
 +
              <div class="row featurette">
 +
                <img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/4/4f/Tudelft_modeling_gene_model.png" style="width:200px; background-size: cover;" alt="Generic placeholder image">
 +
              </div>
 +
            </a>
 +
          </div>
 +
        </div>
 +
        <div class="col-xs-3 col-md-3">
 +
          <div class="panel-heading panel-title" role="tab" id="heading4gene">
 +
            <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion1" href="#collapse4gene" aria-expanded="false" aria-controls="collapse4gene">
 +
              <div class="row featurette">
 +
                <img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/3/31/Tudelft_modeling_gene_results.png" style="width:200px; background-size: cover;" alt="Generic placeholder image">
 +
              </div>
 +
            </a>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="panel panel-default">
 +
        <div id="collapse1gene" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading1gene">
 +
          <div class="panel-body">
 +
Text1
 +
<a href="#accordion1gene" class="btn btn-info" role="button" onclick="$('html,body').animate({scrollTop: $('#accordion1gene').offset().top}, 'slow');" style="text-decoration:none; color:white; float:right;">Back to Top</a>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="panel panel-default">
 +
        <div id="collapse2gene" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading2gene">
 +
          <div class="panel-body">
 +
            Text2
 +
  <a href="#accordion1gene" class="btn btn-info" role="button" onclick="$('html,body').animate({scrollTop: $('#accordion1gene').offset().top}, 'slow');" style="text-decoration:none; color:white; float:right;">Back to Top</a>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="panel panel-default">
 +
        <div id="collapse3gene" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading3gene">
 +
          <div class="panel-body">
 +
text3
 +
  <a href="#accordion1gene" class="btn btn-info" role="button" onclick="$('html,body').animate({scrollTop: $('#accordion1gene').offset().top}, 'slow');" style="text-decoration:none; color:white; float:right;">Back to Top</a>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="panel panel-default">
 +
        <div id="collapse4gene" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading4gene">
 +
          <div class="panel-body">
 +
<h2>csgA production rate</h2>
 +
<p class="lead">The csgA production rate is defined as the production of csgA per second per cell. To be able to calculate this number, the following unknown parameters need to be characterized:</p>
 +
 
 +
<p class="lead" style="margin-bottom:5px;">I. Activity of the promoter (with different levels of rhamnose induction).</p>
 +
<p class="lead">II. Export rate of csgA to the extracellular space.</p>
 +
 
 +
<p class="lead">If these parameters are known, a model for the csgA production can be formulated and the export of csgA to the extracellular space can be calculated.  </p>
 +
 
 +
<p class="lead">The activity of the promoter, denoted as PoPs, can be calculated by a kinetic experiment with GFP. For this experiment, we made a construct with GFPmut3 (modified GFP variant with stronger fluorescent signal) and csgA under the same rhamnose promoter. The constructs used for this experiment are depicted in Fig. 2. </p>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<figure>
 +
<div class="row">
 +
<div class="col-md-6 col-xs-6">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/2/22/Modelling_pic_6.png" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
</div>
 +
<div class="col-md-6 col-xs-6">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/d2/Modelling_pic_7.png" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
</div>
 +
</div>
 +
<figcaption>Fig. 2: csgA-GFPmut3 construct (left), csgA construct (right).</figcaption>
 +
</figure>
 +
 
 +
<p class="lead">As csgA and GFP are under the same promoter, the fluorescence of GFP can be related to the production of csgA. It is presumed that the promoter activity is independent of the addition of the GFPmut3 gene. </p>
 +
 
 +
<p class="lead">As already mentioned in the section “Kinetic experiment” under “Project”, both the fluorescence and OD600 were measured. It is important to also measure the cell density, as we are interested in the fluorescence per cell per second. To calculate how much fluorescence corresponds to a certain amount of GFP (in nanogram), a calibration curve has been constructed with wtGFP. As the ratio of emission maxima for GFPmut3 relative to wtGFP is 21 at an excitation of 488nm (Brendan et. al), the correct mass amount of GFP mut3 could be determined. </p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/f/f3/Modelling_pic_8.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 3: OD600 for 0% (w/v), 0.2% (w/v) and 0.5% (w/v) rhamnose (for both the csgA-GFPmut3 and csgA constructs). </figcaption></figure>
 +
 
 +
<p class="lead">In Fig. 3, the OD600 is plotted for each of the samples in the kinetic experiment. As can be seen from Fig. 3, there is some difference in OD600 between the samples. Therefore, the fluorescence signal normalized by the number of cells as shown in Fig. 4:</p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/f/f3/Modelling_pic_8.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 3: OD600 for 0% (w/v), 0.2% (w/v) and 0.5% (w/v) rhamnose (for both the csgA-GFPmut3 and csgA constructs). </figcaption></figure>
 +
 
 +
<p class="lead">In Fig. 3, the OD600 is plotted for each of the samples in the kinetic experiment. As can be seen from Fig. 3, there is some difference in OD600 between the samples. Therefore, the fluorescence signal normalized by the number of cells as shown in Fig. 4:</p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/d3/Modelling_pic_9_.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 4: Fluorescence signal normalized by the number of cells for 0% (w/v), 0.2% (w/v) and 0.5% (w/v) rhamnose with the csgA and csgA-GFPmut3 construct. The error bars are included for all experiments. </figcaption></figure>
 +
 
 +
<p class="lead">As can be seen from Fig. 4, GFPmut3 only appears if the culture has been induced by rhamnose. Furthermore, it can be seen that a higher induction level of rhamnose leads to an increase in GFPmut3 and thus fluorescence. Finally, as the fluorescence signal is normalized by the cell density, one can make statements about the activity of the rhamnose promoter. The promoter seems to not be active right after induction, but more after 3 or 4 hours.  This is in accordance with data from literature (Wegerer et. al), in which a low amount of fluorescence with a rhamnose promoter was observed after 2 hours of induction. </p>
 +
 
 +
<p class="lead">The calibration line of fluorescence versus mass amount GFPmut3 is given in Fig. 5. </p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/9/9e/Modelling_pic_10.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 5: Calibration line of the fluorescence signal of GFPmut3 versus its amount in nanogram. </figcaption></figure>
 +
 
 +
<p class="lead">The corresponding function of the GFPmut3 calibration line with <i>mass<sub>GFP</sub></i> in ng is:</p>
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/7/79/Modelling_eq_1.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
<p class="lead">With the calibration line, which was made with the exact same settings as the kinetic experiment, the mass amount of GFPmut3 per cell can be calculated. With Eq. 1, the fluorescence signal was converted to mass amount of GFPmut3 for rhamnose induction of 0.2% (w/v) and 0.5% (w/v). </p>
 +
 
 +
<p class="lead">After this conversion, the units are still in nanogram per OD600. As the desired unit is molecules per cells, the following dimension analysis has been performed:</p>
 +
 
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/d8/Modelling_eq_2.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
<p class="lead">The result of this unit conversion is shown in Fig. 6:</p>
 +
 
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/a/ae/Modelling_pic_11.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 6: Calibration line of the fluorescence signal of GFPmut3 versus its amount in molecules / cell.</figcaption></figure>
 +
 
 +
<p class="lead">The GFPmut3 steady state concentrations are thus:</p>
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/c/cd/Modelling_eq_3.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
<p class="lead">As the data is now converted to molecules per cell, it is possible to construct a model with the purpose of predicting the same steady state levels as in the performed experiments. The only unknown remaining in this model is the promoter activity, which can be varied to correctly fit the data.  </p>
 +
 
 +
<p class="lead">The model that was made is a mathematical model of ordinary differential equations (ODE’s) describing the GFP mRNA concentration (Eq. 2), immature GFP protein concentration (Eq. 3) and mature GFP protein concentration (Eq. 4) in Table 1. All concentrations are modeled per cell per second. The immature protein is the nonfluorescent GFP, the mature protein is the fluorescent protein (which will be fitted to the data). </p>
 +
 
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/4/46/Modelling_table_1.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
 
 +
    <div class="panel-group" id="accordion_s1" role="tablist" aria-multiselectable="true">
 
       <div class="panel panel-default">
 
       <div class="panel panel-default">
 
         <div class="panel-heading panel-title" role="tab" id="heading_s1">
 
         <div class="panel-heading panel-title" role="tab" id="heading_s1">
Line 29: Line 210:
 
         <div id="collapse_s1" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading_s1">
 
         <div id="collapse_s1" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading_s1">
 
           <div class="panel-body">
 
           <div class="panel-body">
<span class="anchor" id="p&p"></span>
+
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/6/65/Modelling_table_2.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  <div id="white">
+
    <div class="jumbotron">
+
      <div class="container">
+
        <h1>Time for Printing</h1>
+
      <p class="lead text-muted">  In the section hardware, we characterized the velocity profile of our 3D printer. In order to make your figure of choice, the motors need to be pressed for a certain amount of time. In order to calculate these times, the MATLAB functions “Time_printer.m” and “Connect_points.m” have been written. These codes generate a text file which indicates how many seconds the motors have to be pressed to make a certain figure with our Biolinker. </p>
+
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   <div class="container">
+
   </div>
 +
</div>
  
<h2>Tutorial to printing time!</h2>
+
<p class="lead">In the kinetic model, the growth rate of the bacteria is not a constant (as can be seen from Fig. 3). The bacteria grow exponentially from 2 to 3. 5 hours before going into the stationary phase. Until  2 hours, the bacteria are in the lag phase of growth. This growing behavior, in the order lag phase - exponential phase - stationary phase, is characterized with the following differential equation (Koseki et al.):</p>
<p class="lead">Let’s say, we want to print TU in the petri-dish with the Biolinker. At first, the number of points of this figure needs to be determined. To print TU you would need 8 points. The number of points can be set by changing the parameter “max_teller” in the file “Time_printer.m” (here: 8 points). When this parameter has been filled in, the file “Time_printer” can be run in MATLAB. After running, the file generates the following figure:</p>
+
  
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/e/ee/Modelling_eq_4.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/7/73/Prin_pic_1.png" style="width:80%; background-size: cover;" alt="Generic placeholder image">
+
<p class="lead">In order to fit Eq. 5 to the OD600 data depicted in Fig. 3, Eq. 5 was solved analytically:</p>
<p class="lead">The middle of the cross indicates where the point will be placed after clicking. Click 8 times for making TU appear in the petri dish:</p>
+
  
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/2/21/Modelling_eq_5.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/2/28/Prin_pic_2.png" style="width:80%; background-size: cover;" alt="Generic placeholder image">
+
<p class="lead">From Eq. 6, the parameters <i>OD<sub>max</sub></i>, <i>q<sub>0</sub></i> and <i>µ<sub>max</sub></i> can be fitted to the OD600 data depicted in Fig. 3. </p>
  
<p class="lead">In order to make the desired figure more clear, open the function “Connect_points.m”. In this file, there are two input parameters.</p>
+
<p class="lead">The fit of Eq. 6 to our OD600 data is shown in Fig. 7. As the OD600 profiles of rhamnose induction with 0.2% (w/v) and 0.5% (w/v) were similar, only the OD600 profile for 0.2% (w/v) was fitted to Eq. 6.</p>
  
<p class="lead">The first input parameter is “line_to_be_removed”. Inside the squared brackets, list the points that should not be connected (here: points 4 and 5).</p>
+
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/b/bc/Modelling_pic_12.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 7: Fit of Eq. X to the OD600 data. The <i>R<sup>2</sup></i>-<i>value</i> of the fit is equal to 0.988</figcaption></figure>
  
<p class="lead">In the second input parameter, “time_to_press”, indicate with which gear you want to print. For the slow gear select “v_slow”, for the fast gear select “v_fast”. The “v” stands for the velocity of the needle, which has been measured for both gears. For the specifications of the measurements, go to the section “Hardware”.</p>
+
<p class="lead">The fitted values for <i>OD<sub>max</sub></i>, <i>q<sub>0</sub></i> and <i>µ<sub>max</sub></i> are:</p>
  
<p class="lead">To print TU in a petri dish, we will select the slow gear. The MATLAB file “Connect_ponts.m” can now be runned. The following figure will appear:</p>
+
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/a/ae/Modelling_eq_6.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  
 +
  <div class="panel-group" id="accordion_s2" role="tablist" aria-multiselectable="true">
 +
      <div class="panel panel-default">
 +
        <div class="panel-heading panel-title" role="tab" id="heading_s2">
 +
          <a class="collapsed" role="button" data-toggle="collapse" data-parent="accordion_s2" href="#collapse_s2" aria-expanded="false" aria-controls="collapse_s2">
 +
Symbols
 +
          </a>
 +
        </div>
 +
        <div id="collapse_s2" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading_s2">
 +
          <div class="panel-body">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/6/67/Modelling_table_3.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
      </div>
 +
    </div>
 +
  </div>
 +
</div>
  
 +
<p class="lead">From the fitted function of the OD600, an analytical expression for the growth rate can be derived. The growth rate is equal to:</p>
  
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/4/49/Prin_pic_3.png" style="width:80%; background-size: cover;" alt="Generic placeholder image">
+
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/a/af/Modelling_eq_7.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  
<p class="lead">If the printed figure is satisfying enough, the printing times can be requested by clicking on the automatic generated test file “time_to_press”.</p>
+
<p class="lead">Filling in Eq. 7 and Eq. 8 in Eq. 9 gives the following expression for the growth rate:</p>
  
<p class="lead">Opening the file “time_to_press.m” gives the following result:</p>
+
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/8/81/Modelling_eq_8.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">The growth rate can also be estimated from the OD600 by integrating Eq. 7:</p>
  
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/1/11/Modelling_eq_9.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
  
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/b/b6/Prin_pic_4.png" style="width:80%; background-size: cover;" alt="Generic placeholder image">
+
<p class="lead">In Fig. 8, the fitted growth rate as a function of time and the growth rate estimated from our data are both plotted.</p>
  
<h3>Now we know how much time we have to press our KNEX motors!</h3>
+
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/5/52/Modelling_pic_13.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 8: Growth rate from model and data plotted as a function of time. </figcaption></figure>
  
 +
<p class="lead">The difference between data and model can be explained by the approximation of the growth rate from the data or the error in the measurement of the plate reader. However, the growth rate function correctly describes the trend of the data.  </p>
 +
 +
<h2>csgA intracellular concentration</h2>
 +
<p class="lead">From the kinetic experimental data, the steady state concentration of GFP was 1.9∙104 molecules per cell for 0.2% (w/v) rhamnose induction and 3.3∙104 molecules per cell for 0.5% (w/v) rhamnose induction. As the csgA is transported to the extracellular space, the intracellular concentration of csgA  (steady state) is not expected to be higher than the steady state concentration of GFP. Therefore, we estimate the steady state intracellular csgA concentration to be half the steady state concentration of GFP. </p>
 +
 +
<p class="lead">The intracellular steady state concentrations of csgA are thus:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/db/Modelling_eq_10.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 +
<p class="lead">In order to calculate the csgA concentration in and outside the cell, a system of ordinary differential equations (ODE) needs to be defined. This model is similar to the GFP ODE system, except that the csgA is transported out of the cell. As the transporter protein (csgG) is not ATP dependent (van Gerven et. al), it can be presumed that the rate of csgA transport is dependent on the intracellular csgA concentration times a transport rate constant (kt). Furthermore, the translation rate of csgA is higher than the GFP translation rate. The translation rate of csgA is equal to:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/e/e8/Modelling_eq_11.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">The system of ODE’s describing csgA intracellular and extracellular concentration can be found in Table 2. </p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/0/0c/Modelling_table_4.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 +
<div class="panel-group" id="accordion_s3" role="tablist" aria-multiselectable="true">
 +
      <div class="panel panel-default">
 +
        <div class="panel-heading panel-title" role="tab" id="heading_s3">
 +
          <a class="collapsed" role="button" data-toggle="collapse" data-parent="accordion_s3" href="#collapse_s3" aria-expanded="false" aria-controls="collapse_s3">
 +
Symbols
 +
          </a>
 +
        </div>
 +
        <div id="collapse_s3" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading_s3">
 +
          <div class="panel-body">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/e/ee/Modelling_table_5.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 +
 +
<p class="lead">From Eq. 14, the steady state concentration of csgA can be calculated. As in steady state the accumulation of intracellular csgA is zero, the csgA transport rate can be written as:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/8/8c/Modelling_eq_12.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 +
<p class="lead">From the kinetic model, the PoPs was fitted to our data and can be used to calculate the steady state concentration of csgA mRNA:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/df/Modelling_eq_13.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">Filling in the steady state concentration of csgA mRNA gives:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/b/b4/Modelling_eq_14.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">The degradation of csgA mRNA is presumed to be equal to the degradation of GFPmut3 mRNA. Furthermore, when the concentration of  intracellular csgA has reached steady state, the growth rate of the culture will be close to zero as the culture will be in the stationary phase. Filling in the numbers in Eq. 18, gives a csgA transport rate constant of:</p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/1/16/Modelling_eq_15.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">The extracellular csgA concentration can now be plotted as a function of time (Fig. 9). </p>
 +
 +
<figure><img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/b/b8/Modelling_pic_14.png" style="width:100%; background-size: cover;" alt="Generic placeholder image"><figcaption>Fig. 9 – Extracellular concentration of csgA as a function of time for different levels of rhamnose induction.</figcaption></figure>
 +
 +
<p class="lead">If the intracellular concentration of csgA has reached steady state, the production of csgA is equal to: </p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/9/99/Modelling_eq_16.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
 
 +
<p class="lead">The extracellular concentration of csgA is thus equal to: </p>
 +
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/6/68/Modelling_eq_17.PNG" style="width:100%; background-size: cover;" alt="Generic placeholder image">
 +
<p class="lead">As can be seen from Eq. 20, if the intracellular concentration of csgA has reached steady state, the extracellular concentration of csgA will increase linearly in time (as can be also seen after 5 hours in Fig. 9).  </p>
 +
<p class="lead">As the production rate of csgA is in the order of 2-3 proteins per second, the csgA production will be limiting. This is because the number of csgB proteins in the outer membrane is more in the order of 100-1000 proteins csgB (Wang et. al). A higher induction level of rhamnose will produce more curlis, leading to a higher degree of curli intercellular connectivity and thus to a stronger biofilm. Therefore, with our inducible rhamnose promoter it is possible to control, to a certain degree, the biofilm strength of our printed samples.</p>
 +
 +
  <a href="#accordion1gene" class="btn btn-info" role="button" onclick="$('html,body').animate({scrollTop: $('#accordion1gene').offset().top}, 'slow');" style="text-decoration:none; color:white; float:right;">Back to Top</a>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </div>
 +
  </div>
 
</div>
 
</div>
 +
          </a>
 +
        </div>
 +
        <div id="collapse_s1" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading_s1">
 +
          <div class="panel-body">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/d/dd/Modelling_pic_2.png" style="width:600px; background-size: cover; margin=0 auto;" alt="Generic placeholder image">
 +
      </div>
 +
    </div>
 +
  </div>
 +
</div>
 +
 +
 +
 +
 +
 +
<a href="#curli" role="button" onclick="$('html,body').animate({scrollTop: $('#curli').offset().top}, 'slow');" style="text-decoration:none;">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/7/7c/Modelling_pic_3.png" style="width:600px; background-size: cover; margin=0 auto;" alt="Generic placeholder image"></a>
 +
 +
<a href="#biofilm" role="button" onclick="$('html,body').animate({scrollTop: $('#biofilm').offset().top}, 'slow');" style="text-decoration:none;">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/7/79/Modelling_pic_4.png" style="width:600px; background-size: cover; margin=0 auto;" alt="Generic placeholder image"></a>
 +
 +
<a href="#p&p" role="button" onclick="$('html,body').animate({scrollTop: $('#p&p').offset().top}, 'slow');" style="text-decoration:none;">
 +
<img class="featurette-image img-responsive center-block" src="https://static.igem.org/mediawiki/2015/9/9a/Modelling_pic_5.png" style="width:600px; background-size: cover; margin=0 auto;" alt="Generic placeholder image"></a>
 +
   
 +
 +
 +
 +
 +
 +
</div>
 +
  </div>

Revision as of 00:48, 18 September 2015

Modeling

..

Overview

Our main goal is to make a reproducible biofilm. The strength of the biofilm is determined by the degree of intercellular connectivity through curli fibers. With modeling, it is possible to determine which factors have a strong influence on the intercellular connectivity. For instance, one could argue that a higher csgB nucleator production would lead to more curli fibers and therefore an improved connectivity. But if the csgA production would be limiting, solely short curli chains would be formed possibly preventing the cells to even interconnect.

Generic placeholder image
Fig. 1: Illustration depicting the cells interconnecting by curli fibers. The csgA protein is secreted by the cells to the extracellular space. A curli can be formed when the csgA reacts with the nucleator protein csgB, located at the outer membrane of the cells.

The modeling can be divided in 4 sections. In section 1, the csgA production rate, intracellular csgA concentration and csgB membrane concentration are determined. As our csgA production is controlled under the induction of rhamnose, all rates and concentrations are calculated for two levels of induction (0.2% (w/v) and 0.5% (w/v)) rhamnose. In section 2, the rates and concentrations are used in a grid model which is able to make an estimate on the characteristic time of curli formation. In section 3 the characteristic time for curli formation is used to predict the strength of the biofilm. Finally, in section 4, an application in MATLAB is presented able to calculate the printing time of a certain figure or shape with our Biolinker printer. To go to either of these sections, click on one of the buttons below or select your section of interest in the modeling submenu!

Generic placeholder image
Generic placeholder image Generic placeholder image Generic placeholder image