Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

Line 124: Line 124:
 
<h3> Simulation of GFP measurement </h3>
 
<h3> Simulation of GFP measurement </h3>
 
<p> As we have seen earlier, lactate production signals still prevails on the quorum sensing signal. In the broader context of our system, the experimenter will take the measurement at a specific time point. The heatmap represents the ratio of GFP output with and without colocalization on the doughnut for different rates of lactate production and different number of <i> E. coli </i> colocalized on the doughnut. In both cases, the <i> E. coli </i> <b> receive the same amount of lactate. </p>
 
<p> As we have seen earlier, lactate production signals still prevails on the quorum sensing signal. In the broader context of our system, the experimenter will take the measurement at a specific time point. The heatmap represents the ratio of GFP output with and without colocalization on the doughnut for different rates of lactate production and different number of <i> E. coli </i> colocalized on the doughnut. In both cases, the <i> E. coli </i> <b> receive the same amount of lactate. </p>
<p> We can see that depending on the rate of lactate production, there is an optimum for the fold change ratio between the GFP output. The GFP output depends a lot on the timescales because of the fold-change sensor. </p>
+
<p> We can see that depending on the rate of lactate production, there is an optimum for the fold change ratio between the GFP output. The GFP output depends a lot on the timescales because of the fold-change sensor.</b> </p>
 
<div class="imgBox">
 
<div class="imgBox">
 
<a href="https://2015.igem.org/File:HeatMapAndGATE.png">
 
<a href="https://2015.igem.org/File:HeatMapAndGATE.png">
 
<img width="100%" src="https://static.igem.org/mediawiki/2015/b/b3/HeatMapAndGATE.png">
 
<img width="100%" src="https://static.igem.org/mediawiki/2015/b/b3/HeatMapAndGATE.png">
 
</a>
 
</a>
<p>Simulation of the full system <b> with the natural lactate detection system </b></p>
+
<p>Simulation of the full system <b> with the fold change sensor </b></p>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 07:59, 18 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Compartment Model

Introduction

Logic of an AND-gate

In our system we want to reduce the amount the amount of false positives . That’s why cells displaying intermediary characteristics should not be detected by our system. We consider that cells showing increased lactate production rate but do not expose phosphatidylserine, or cells exposing phosphatidylserine but not an increased lactate production rate should not be recognized by our system. We implemented the system to obtain an AND GATE . The system works as two sequential filtering step. The sequential design was used in order to limit the self-activation of the quorum sensing module . Indeed as we have seen in the AHL module, the difference between the two modules strongly depends on the amount of LuxR in the E. coli . This design has a disadvantage though, it requires fine-tuning in order to avoid that one signal prevails on the second one. In the scheme displayed below, we describe in which situation, the E. coli should display fluorescence.

One particularity of our system is that even healthy cells will produce lactate. That is why we implemented a lactate module that works as a fold-change sensor. The fold change sensor will produce a pulse of LuxR. We will study here how the pulsed response influence the output of the system.

Description of the AND-GATE

Genetic design

In this section, we describe the behaviour of the combined model.

Combined Compartment Model

Overview

In this model we plan to simulate whether our system can work as an AND-GATE. We will compare the output if we use the simple lactate detection system or the fold-change sensor.

The equations are the integration of both modules in one compartment model.

Assumptions

We assume:

  1. Instant diffusion in the compartments.
  2. In all the following we assume the same nanowell volume to be 1 nL.
  3. All the E. coli receive the amount of lactate. This is the worst case scenario since probably the E. coli on the doughnut will sense a higher lactate production.

Equations

The equations are the combination of the compartment model of the AHL module and the lactate module.

The internal states: Lactate, LuxR, LuxRAHL, LuxI have the same ODEs than the single cell model. As already done in the compartment model, we just add convection between the different compartments.

Simulation when the lactate concentration reach the same steady states

Below you will find one example of a comparison between the response of a system including the fold change sensor and the one harboring only the natural detection system for the four different cases described earlier. The lactate inputs give two different delayed pulses of LuxR. The different pulses of LuxR lead to different delay of self-activation of the GFP output. The first GFP output to activate is the one with the cancer cell, the second and third one represent cells with intermediary characteristics. The latest activation time is for the one with no colocalization and no lactate production. With the fold-change sensor, we obtain a significant time difference between the different inputs. With only the natural detection system we do not obtain a clear difference between the different cases. The lactate signal prevails on the quorum sensing signal.

Simulation of the full system with the fold change sensor

Simulation of the full system with the natural lactate detection system

Simulation when the lactate concentration reach different steady states

Here we will compare again the response of the system when including the fold change sensor and the natural lactate detection system.

We can see that here again the fold change gives a better response for the same parameters.

Simulation of the full system with the fold change sensor

Simulation of the full system with the natural lactate detection system

Advantages of the fold change

The fold-change sensor solved the problem of leakiness and the problems about the size of the nanowell plate we had earlier. The pulse of LuxR shoudl be large enough in order to activate the quorum sensing module. A broader peak can be obtained by introducing a delay in the response of LacI. This can be easily implemented biologically if needed by introducing an intermediary protein between lactate induction and LacI production.

Simulation of GFP measurement

As we have seen earlier, lactate production signals still prevails on the quorum sensing signal. In the broader context of our system, the experimenter will take the measurement at a specific time point. The heatmap represents the ratio of GFP output with and without colocalization on the doughnut for different rates of lactate production and different number of E. coli colocalized on the doughnut. In both cases, the E. coli receive the same amount of lactate.

We can see that depending on the rate of lactate production, there is an optimum for the fold change ratio between the GFP output. The GFP output depends a lot on the timescales because of the fold-change sensor.

Simulation of the full system with the fold change sensor

Single cell model

Overview

The single cell model is provided here to simulate the combined model.

Chemical species

Name Description
AHL Signaling protein, Acyl homoserine lactone (30C6-HSL)
LuxR Regulator protein, that can bind to AHL to form a complex
LuxRAHL Complex of LuxR and AHL, activates transcription of LuxI
LuxI Autoinducer synthase
Aiia AHL-lactonase, N-Acyl Homoserine Lactone Lactonase
Lact Lactate
LacI Lac operon repressor, DNA-binding protein, acts as a protein
IPTG Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest
IL Dimer formed between LacI and IPTG

Reactions

\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \end{align*} \begin{align*} \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations including the fold change sensor

Combining all of the equations from the two different modules, it yields the following system:

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}

Equations including the natural detection system

\begin{align*} \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}

We would like to thank our sponsors